Patents by Inventor Edwin Hlavka

Edwin Hlavka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220249126
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Application
    Filed: November 15, 2021
    Publication date: August 11, 2022
    Applicants: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. GAMMIE, Philip J. HAARSTAD, David BLAESER, Ryan BAUER, Stephen ROLLER, Rachael QUINN, Chetan PASRIJA, Edwin HLAVKA
  • Patent number: 11172960
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: November 16, 2021
    Assignees: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. Gammie, Philip J. Haarstad, David Blaeser, Ryan Bauer, Stephen Roller, Rachael Quinn, Chetan Pasrija, Edwin Hlavka
  • Patent number: 11154325
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: October 26, 2021
    Assignees: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. Gammie, Philip J. Haarstad, David Blaeser, Ryan Bauer, Stephen Roller, Rachael Quinn, Chetan Pasrija, Edwin Hlavka
  • Publication number: 20210259738
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Applicants: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. GAMMIE, Philip J. HAARSTAD, David BLAESER, Ryan BAUER, Stephen ROLLER, Rachael QUINN, Chetan PASRIJA, Edwin HLAVKA
  • Publication number: 20210196320
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Application
    Filed: March 4, 2021
    Publication date: July 1, 2021
    Applicants: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. GAMMIE, Philip J. HAARSTAD, David BLAESER, Ryan BAUER, Stephen ROLLER, Rachael QUINN, Chetan PASRIJA, Edwin HLAVKA
  • Patent number: 11045224
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: June 29, 2021
    Assignees: University of Maryland, Baltimore, University of Maryland Medical System LLC, Protaryx Medical Inc.
    Inventors: James S. Gammie, Philip J. Haarstad, David Blaeser, Ryan Bauer, Stephen Roller, Rachael Quinn, Chetan Pasrija, Edwin Hlavka
  • Publication number: 20200246046
    Abstract: In some embodiments, a method includes a shaft having a side catheter guide attached thereto via a guide coupler into an inferior vena cava and a superior vena cava such that the guide coupler is disposed in a right atrium, and applying a distal force to a proximal portion of the side catheter guide such that a distal end of the side catheter guide deflects laterally about the guide coupler towards a septum. The method further includes extending a side catheter that is disposed within the side catheter guide distally from the side catheter guide towards and into contact with the septum. The method further includes, with the side catheter in contact with the septum, extending a septum penetrator that is slidably disposed within the side catheter distally from the side catheter such that the septum penetrator pierces the septum.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 6, 2020
    Inventors: James S. GAMMIE, Philip J. HAARSTAD, David BLAESER, Ryan BAUER, Stephen ROLLER, Rachael QUINN, Chetan PASRIJA, Edwin HLAVKA
  • Publication number: 20160324637
    Abstract: The present invention relates to a minimally invasive method of performing annuloplasty. According to one aspect of the present invention, a method for performing annuloplasty includes accessing a left ventricle of a heart to provide a discrete plication element to the left ventricle, and engaging the plication element to tissue near a mitral valve of the heart. Engaging the plication element includes causing the plication element to gather a portion of the tissue to create a plication. In one embodiment, accessing the left ventricle of the heart to provide the plication element includes accessing the left ventricle of the heart using a catheter arrangement.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 10, 2016
    Inventors: Edwin Hlavka, Jonathan Podmore, Paul A. Spence
  • Patent number: 9358112
    Abstract: A method for performing annuloplasty includes accessing a left ventricle of a heart to provide a discrete plication element to the left ventricle, and engaging the plication element to tissue near a mitral valve of the heart. Engaging the plication element includes causing the plication element to gather a portion of the tissue to create a plication. In one embodiment, accessing the left ventricle of the heart to provide the plication element includes accessing the left ventricle of the heart using a catheter arrangement.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 7, 2016
    Assignee: MITRALIGN, INC.
    Inventors: Edwin Hlavka, Jonathan Podmore, Paul A. Spence
  • Publication number: 20140188215
    Abstract: The present invention relates to a minimally invasive method of performing annuloplasty. According to one aspect of the present invention, a method for performing annuloplasty includes accessing a left ventricle of a heart to provide a discrete plication element to the left ventricle, and engaging the plication element to tissue near a mitral valve of the heart. Engaging the plication element includes causing the plication element to gather a portion of the tissue to create a plication. In one embodiment, accessing the left ventricle of the heart to provide the plication element includes accessing the left ventricle of the heart using a catheter arrangement.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: Mitralign, Inc.
    Inventors: Edwin Hlavka, Jonathan Podmore, Paul A. Spence
  • Patent number: 8202315
    Abstract: The present invention relates to a minimally invasive method of performing annuloplasty. According to one aspect of the present invention, a method for performing annuloplasty includes accessing a left ventricle of a heart to provide a discrete plication element to the left ventricle, and engaging the plication element to tissue near a mitral valve of the heart. Engaging the plication element includes causing the plication element to gather a portion of the tissue to create a plication. In one embodiment, accessing the left ventricle of the heart to provide the plication element includes accessing the left ventricle of the heart using a catheter arrangement.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: June 19, 2012
    Assignee: Mitralign, Inc.
    Inventors: Edwin Hlavka, Jonathan Podmore, Paul A. Spence
  • Publication number: 20110130758
    Abstract: Methods and devices are described for modifying tissue in a spine of a patient to treat or alleviate spinal stenosis. In one embodiment, a method may include: advancing at least a distal portion of an elongate tissue modification device into an epidural space and between target tissue and non-target tissue in the spine; positioning the tissue modification device so that at least one abrasive surface of the device faces target tissue and at least one non-abrasive surface faces non-target tissue; applying tensioning force at or near separate distal and proximal portions of the tissue modification device; and translating the tissue modification device back and forth while maintaining at least some tensioning force to abrade at least a portion of the target tissue with the at least one abrasive surface. Unwanted damage to the non-target tissue may be prevented via the at least one non-abrasive surface.
    Type: Application
    Filed: May 4, 2006
    Publication date: June 2, 2011
    Applicant: Baxano, Inc.
    Inventors: Jeffery Bleich, Edwin Hlavka
  • Publication number: 20070198046
    Abstract: The tool for enhancing visualization during surgery includes a shaft having a balloon member at a distal end. A fluid conduit through the shaft permits passing and inflation fluid into the balloon to selectively inflate the balloon. The balloon is formed of a material transparent to a wavelength of interest. A waveguide extends within the shaft into the interior of the balloon to visualize anatomical features external to the balloon.
    Type: Application
    Filed: February 17, 2006
    Publication date: August 23, 2007
    Inventors: Edwin Hlavka, Gregory Brucker, Steven Savage, Adam Berman
  • Publication number: 20070123888
    Abstract: Methods and devices are described for modifying tissue in a spine of a patient to treat or alleviate spinal stenosis. In one embodiment, a method may include: advancing at least a distal portion of an elongate tissue modification device into an epidural space and between target tissue and non-target tissue in the spine; positioning the tissue modification device so that at least one abrasive surface of the device faces target tissue and at least one non-abrasive surface faces non-target tissue; applying tensioning force at or near separate distal and proximal portions of the tissue modification device; and translating the tissue modification device back and forth while maintaining at least some tensioning force to abrade at least a portion of the target tissue with the at least one abrasive surface. Unwanted damage to the non-target tissue may be prevented via the at least one non-abrasive surface.
    Type: Application
    Filed: May 4, 2006
    Publication date: May 31, 2007
    Applicant: Baxano, Inc.
    Inventors: Jeffery Bleich, Edwin Hlavka
  • Publication number: 20060111692
    Abstract: A robotic catheter system includes a controller including a master input device and instrument driver in communication with the controller. An elongate flexible guide instrument is operatively coupled to the instrument driver. A fluid injection needle may be advanced from, or retracted into, a distal portion of the guide instrument.
    Type: Application
    Filed: August 12, 2005
    Publication date: May 25, 2006
    Inventors: Edwin Hlavka, Daniel Wallace, Frederic Moll
  • Publication number: 20060095059
    Abstract: Methods and apparatus are provided for selective surgical removal of tissue, e.g., for enlargement of diseased spinal structures, such as impinged lateral recesses and pathologically narrowed neural foramen. In one variation, tissue may be ablated, resected, removed, or otherwise remodeled by standard small endoscopic tools delivered into the epidural space through an epidural needle. Once the sharp tip of the needle is in the epidural space, it is converted to a blunt tipped instrument for further safe advancement. A specially designed epidural catheter that is used to cover the previously sharp needle tip may also contain a fiberoptic cable. Further embodiments of the current invention include a double barreled epidural needle or other means for placement of a working channel for the placement of tools within the epidural space, beside the epidural instrument.
    Type: Application
    Filed: October 15, 2005
    Publication date: May 4, 2006
    Inventors: Jeffery Bleich, Edwin Hlavka, Vahid Saadat, Steven Spisak, David Miller, James Yurchenco
  • Publication number: 20060089609
    Abstract: Methods and apparatus are provided for selective surgical removal of tissue. In one variation, tissue may be ablated, resected, removed, or otherwise remodeled by standard small endoscopic tools delivered into the epidural space through an epidural needle. The sharp tip of the needle in the epidural space, can be converted to a blunt tipped instrument for further safe advancement. The current invention includes specific tools that enable safe tissue modification in the epidural space, including a barrier that separates the area where tissue modification will take place from adjacent vulnerable neural and vascular structures. A nerve stimulator may be provided to reduce a risk of inadvertent neural abrasion.
    Type: Application
    Filed: October 15, 2005
    Publication date: April 27, 2006
    Inventors: Jeffery Bleich, Edwin Hlavka
  • Publication number: 20060089640
    Abstract: Methods and apparatus are provided for selective surgical removal of tissue. In one variation, tissue may be ablated, resected, removed, or otherwise remodeled by standard small endoscopic tools delivered into the epidural space through an epidural needle. The sharp tip of the needle in the epidural space, can be converted to a blunt tipped instrument for further safe advancement. The current invention includes specific tools that enable safe tissue modification in the epidural space, including a barrier that separates the area where tissue modification will take place from adjacent vulnerable neural and vascular structures. A nerve stimulator may be provided to reduce a risk of inadvertent neural abrasion.
    Type: Application
    Filed: October 15, 2005
    Publication date: April 27, 2006
    Inventors: Jeffery Bleich, Edwin Hlavka
  • Publication number: 20060057560
    Abstract: A method for modifying a geometry of a collagenous tissue mass includes heating the collagenous tissue mass to a temperature sufficient to cause denaturation, and introducing a biocompatible fixative, such as genepin, into the collagenous tissue mass.
    Type: Application
    Filed: July 19, 2005
    Publication date: March 16, 2006
    Applicant: Hansen Medical, Inc.
    Inventors: Edwin Hlavka, Frederic Moll, Robert Younge, Daniel Wallace
  • Publication number: 20050247558
    Abstract: A method of pumping fluid including the steps of providing an electrokinetic pump comprising a pair of double-layer capacitive electrodes having a capacitance of at least 10?2 Farads/cm2 and being connectable to a power source, a porous dielectric material disposed between the electrodes and a reservoir containing pump fluid; connecting the electrodes to a power source; and moving pump fluid out of the reservoir substantially without the occurrence of Faradaic processes in the pump. The invention also includes an electrokinetic pump system having a pair of double-layer capacitive electrodes having a capacitance of at least 10?2 Farads/cm2; a porous dielectric material disposed between the electrodes; a reservoir containing pump fluid; and a power source connected to the electrodes; the electrodes, dielectric material and power source being adapted to move the pump fluid out of the reservoir substantially without the occurrence of Faradaic processes in the pump.
    Type: Application
    Filed: April 21, 2005
    Publication date: November 10, 2005
    Inventors: Deon Anex, Phillip Paul, David Neyer, Edwin Hlavka