Patents by Inventor Edwin Rejda

Edwin Rejda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230311268
    Abstract: The present disclosure includes methods of lapping that include energizing one or more elements that are located proximal to a first magnetoresistive element in a transducer region and generate heat and cause the first magnetoresistive element to selectively expand in the lapping direction relative to one or more other magnetoresistive elements. The present disclosure also includes methods of lapping that use one or more thermal sensors located proximal to the first magnetoresistive element to help control lapping in the lapping direction. The present disclosure includes related lapping systems and sliders.
    Type: Application
    Filed: May 19, 2023
    Publication date: October 5, 2023
    Inventors: Edwin Rejda, Andrew Habermas, Jeff O'Konski, Andrew Sherve, Michael Thomas Johnson, Dongming Liu
  • Patent number: 11691242
    Abstract: The present disclosure includes methods of lapping that include energizing one or more elements that are located proximal to a first magnetoresistive element in a transducer region and generate heat and cause the first magnetoresistive element to selectively expand in the lapping direction relative to one or more other magnetoresistive elements. The present disclosure also includes methods of lapping that use one or more thermal sensors located proximal to the first magnetoresistive element to help control lapping in the lapping direction. The present disclosure includes related lapping systems and sliders.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: July 4, 2023
    Assignee: Seagate Technology LLC
    Inventors: Edwin Rejda, Andrew Habermas, Jeff O'Konski, Andrew Sherve, Michael Thomas Johnson, Dongming Liu
  • Publication number: 20220234166
    Abstract: The present disclosure includes methods of lapping that include energizing one or more elements that are located proximal to a first magnetoresistive element in a transducer region and generate heat and cause the first magnetoresistive element to selectively expand in the lapping direction relative to one or more other magnetoresistive elements. The present disclosure also includes methods of lapping that use one or more thermal sensors located proximal to the first magnetoresistive element to help control lapping in the lapping direction. The present disclosure includes related lapping systems and sliders.
    Type: Application
    Filed: April 14, 2022
    Publication date: July 28, 2022
    Inventors: Edwin Rejda, Andrew Habermas, Jeff O'Konski, Andrew Sherve, Michael Thomas Johnson, Dongming Liu
  • Patent number: 11389924
    Abstract: The present disclosure includes methods of lapping that include energizing one or more elements that are located proximal to a first magnetoresistive element in a transducer region and generate heat and cause the first magnetoresistive element to selectively expand in the lapping direction relative to one or more other magnetoresistive elements. The present disclosure also includes methods of lapping that use one or more thermal sensors located proximal to the first magnetoresistive element to help control lapping in the lapping direction. The present disclosure includes related lapping systems and sliders.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: July 19, 2022
    Assignee: Seagate Technology LLC
    Inventors: Edwin Rejda, Andrew Habermas, Jeff O'Konski, Andrew Sherve, Michael Thomas Johnson, Dongming Liu
  • Publication number: 20190381629
    Abstract: The present disclosure includes methods of lapping that include energizing one or more elements that are located proximal to a first magnetoresistive element in a transducer region and generate heat and cause the first magnetoresistive element to selectively expand in the lapping direction relative to one or more other magnetoresistive elements. The present disclosure also includes methods of lapping that use one or more thermal sensors located proximal to the first magnetoresistive element to help control lapping in the lapping direction. The present disclosure includes related lapping systems and sliders.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 19, 2019
    Inventors: Edwin Rejda, Andrew Habermas, Jeff O'Konski, Andrew Sherve, Michael Thomas Johnson, Dongming Liu
  • Patent number: 9129625
    Abstract: A magnetic device including a write pole, a magnetic reader, or both; and one or more shields adjacent at least a portion of the write pole or the magnetic reader, or both, wherein at least a portion of the one or more shields includes or is made from Ni100-aXa, wherein X is chosen from: Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 8, 2015
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Edwin Rejda
  • Publication number: 20130286509
    Abstract: A magnetic device including a write pole, a magnetic reader, or both; and one or more shields adjacent at least a portion of the write pole or the magnetic reader, or both, wherein at least a portion of the one or more shields includes or is made from Ni100-aXa, wherein X is chosen from: Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Sarbeswar Sahoo, Edwin Rejda
  • Publication number: 20130182545
    Abstract: A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
    Type: Application
    Filed: August 28, 2012
    Publication date: July 18, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Sarbeswar Sahoo, Edwin Rejda, Ibro Tabakovic, Steven Carl Riemer, Michael Christopher Kautzky
  • Patent number: 8477572
    Abstract: A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 2, 2013
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Edwin Rejda, Ibro Tabakovic, Steven Carl Riemer, Michael Christopher Kautzky
  • Patent number: 8259540
    Abstract: A magnetic device that includes a write pole having a write pole tip; a read pole having a read pole tip; an optical near field transducer; and a contact pad. The contact pad includes Ni100-aXa, wherein X is chosen from Ru, Re, Zr, Cr, and Cu; and a is the atomic percent of the element X, and can range from about 20 to about 90. The optical near field transducer is positioned between the read pole and the write pole and the contact pad is positioned adjacent the write pole opposite the optical near field transducer.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 4, 2012
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Edwin Rejda, Ibro Tabakovic, Steven Carl Riemer, Michael Christopher Kautzky