Patents by Inventor Ehsan Azimi

Ehsan Azimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11928838
    Abstract: A calibration platform may obtain measurements for aligning a real-world coordinate system and a display coordinate system. For example, the calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a three-dimensional virtual object and receive, from a positional tracking device, information that relates to a current pose of a three-dimensional real-world object to be aligned with the three-dimensional virtual object. The calibration platform may record a three-dimensional position of a plurality of points on the three-dimensional real-world object based on the current pose of the three-dimensional real-world object, based on an indication that the plurality of points on the three-dimensional real-world object respectively corresponds with a plurality of points on the three-dimensional virtual object.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: March 12, 2024
    Assignee: The Johns Hopkins University
    Inventors: Ehsan Azimi, Long Qian, Peter Kazanzides, Nassir Navab
  • Publication number: 20240013679
    Abstract: A system includes: a phantom object; one or more sensors within the phantom object; and a processor, a computer readable memory, a non-transitory computer readable storage medium associated with a computing device in communication with the phantom object, and program instructions executable by the computing device to cause the computing device to perform operations including: detecting a medical instrument within the phantom object based on sensor data captured by the one or more sensors; measuring a distance between the medical instrument and a target point based on the sensor data; and storing or outputting information identifying the distance between the medical instrument and the target point.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 11, 2024
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Ehsan AZIMI, Peter KAZANZIDES, Zhiyuan NIU
  • Patent number: 11861062
    Abstract: A calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a virtual image having at least one feature. The calibration platform may determine, based on information relating to a gaze of a user wearing the OST-HMD, that the user performed a voluntary eye blink to indicate that the at least one feature of the virtual image appears to the user to be aligned with at least one point on the three-dimensional real-world object. The calibration platform may record an alignment measurement based on a position of the at least one point on the three-dimensional real-world object in a real-world coordinate system based on a time when the user performed the voluntary eye blink. Accordingly, the alignment measurement may be used to generate a function providing a mapping between three-dimensional points in the real-world coordinate system and corresponding points in a display space of the OST-HMD.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: January 2, 2024
    Assignee: The Johns Hopkins University
    Inventors: Ehsan Azimi, Long Qian, Peter Kazanzides, Nassir Navab
  • Publication number: 20230149084
    Abstract: A computer-implemented method includes: receiving, by an augmented reality device, a medical image of a surgical site, generating, by the augmented reality device, a virtual surgical site model based on the medical image; presenting, by the augmented reality device, the virtual surgical site model; receiving, by the augmented reality device, user calibration input; aligning, by the ugmented reality device, the virtual surgical site model with a real-life surgical site based on the user calibration input; and displaying, by the augmented reality device and after the aligning, a virtual insertion path between an incision point and a target point to aid in inserting a tool as part of performing a surgical procedure.
    Type: Application
    Filed: March 18, 2021
    Publication date: May 18, 2023
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Ehsan AZIMI, Peter KAZANZIDES, Judy HUANG, Camilo MOLINA
  • Publication number: 20220366598
    Abstract: A calibration platform may obtain measurements for aligning a real-world coordinate system and a display coordinate system. For example, the calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a three-dimensional virtual object and receive, from a positional tracking device, information that relates to a current pose of a three-dimensional real-world object to be aligned with the three-dimensional virtual object. The calibration platform may record a three-dimensional position of a plurality of points on the three-dimensional real-world object based on the current pose of the three-dimensional real-world object, based on an indication that the plurality of points on the three-dimensional real-world object respectively corresponds with a plurality of points on the three-dimensional virtual object.
    Type: Application
    Filed: July 8, 2022
    Publication date: November 17, 2022
    Applicant: The Johns Hopkins University
    Inventors: Ehsan AZIMI, Long QIAN, Peter KAZANZIDES, Nassir NAVAB
  • Patent number: 11386572
    Abstract: A calibration platform may obtain measurements for aligning a real-world coordinate system and a display coordinate system. For example, the calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a three-dimensional virtual object and receive, from a positional tracking device, information that relates to a current pose of a three-dimensional real-world object to be aligned with the three-dimensional virtual object. The calibration platform may record a three-dimensional position of a plurality of points on the three-dimensional real-world object based on the current pose of the three-dimensional real-world object, based on an indication that the plurality of points on the three-dimensional real-world object respectively corresponds with a plurality of points on the three-dimensional virtual object.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 12, 2022
    Assignee: The Johns Hopkins University
    Inventors: Ehsan Azimi, Long Qian, Peter Kazanzides, Nassir Navab
  • Publication number: 20210142508
    Abstract: A calibration platform may obtain measurements for aligning a real-world coordinate system and a display coordinate system. For example, the calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a three-dimensional virtual object and receive, from a positional tracking device, information that relates to a current pose of a three-dimensional real-world object to be aligned with the three-dimensional virtual object. The calibration platform may record a three-dimensional position of a plurality of points on the three-dimensional real-world object based on the current pose of the three-dimensional real-world object, based on an indication that the plurality of points on the three-dimensional real-world object respectively corresponds with a plurality of points on the three-dimensional virtual object.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 13, 2021
    Applicant: The Johns Hopkins University
    Inventors: Ehsan AZIMI, Long QIAN, Peter KAZANZIDES, Nassir NAVAB
  • Publication number: 20200363867
    Abstract: A calibration platform may display, via an optical see-through head-mounted display (OST-HMD), a virtual image having at least one feature. The calibration platform may determine, based on information relating to a gaze of a user wearing the OST-HMD, that the user performed a voluntary eye blink to indicate that the at least one feature of the virtual image appears to the user to be aligned with at least one point on the three-dimensional real-world object. The calibration platform may record an alignment measurement based on a position of the at least one point on the three-dimensional real-world object in a real-world coordinate system based on a time when the user performed the voluntary eye blink. Accordingly, the alignment measurement may be used to generate a function providing a mapping between three-dimensional points in the real-world coordinate system and corresponding points in a display space of the OST-HMD.
    Type: Application
    Filed: January 31, 2019
    Publication date: November 19, 2020
    Applicant: The Johns Hopkins University
    Inventors: Ehsan AZIMI, Long QIAN, Peter KAZANZIDES, Nassir NAVAB
  • Patent number: 10426815
    Abstract: Embodiments described herein relates to compositions and methods of preventing and/or treating itch in a subject using a therapeutically effective amount of a MRG receptor antagonist. e.g., a tripeptide QWF. In one embodiment, the itch is a non-histamine mediated itch.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: October 1, 2019
    Assignee: The General Hospital Corporation
    Inventors: Ethan A. Lerner, Ehsan Azimi, Vemuri B. Reddy
  • Patent number: 9506740
    Abstract: Systems and methods for enhancing spectral domain optical coherence tomography (OCT] are provided. In particular, a system and method for calibration of spectral interference signals using an acquired calibration signal are provided. The calibration signal may be logarithmically amplified to further improve the accuracy of the calibration. From the calibration signal, a series of more accurate calibration data are calculated. An acquired spectral interference signal is calibrated using these calibration data. Moreover, systems that include logarithmic amplification of the spectral interference signal and variable band-pass filtering of the spectral interference signal are provided. Such systems increase the dynamic range and visualization capabilities relative to conventional spectral domain OCT systems.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: November 29, 2016
    Assignee: The Brigham and Women's Hospital
    Inventors: Mark Brezinski, Bin Liu, Ehsan Azimi
  • Publication number: 20130182259
    Abstract: Systems and methods for enhancing spectral domain optical coherence tomography (OCT] are provided. In particular, a system and method for calibration of spectral interference signals using an acquired calibration signal are provided. The calibration signal may be logarithmically amplified to further improve the accuracy of the calibration. From the calibration signal, a series of more accurate calibration data are calculated. An acquired spectral interference signal is calibrated using these calibration data. Moreover, systems that include logarithmic amplification of the spectral interference signal and variable band-pass filtering of the spectral interference signal are provided. Such systems increase the dynamic range and visualization capabilities relative to conventional spectral domain OCT systems.
    Type: Application
    Filed: December 1, 2010
    Publication date: July 18, 2013
    Inventors: Mark Brezinski, Bin Liu, Ehsan Azimi