Patents by Inventor EHSAN HASHEMI

EHSAN HASHEMI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12084064
    Abstract: A universal machine learning based system for estimating a vehicle state of a vehicle includes one or more controllers executing instructions to receive a plurality of dynamic variables and corresponding historical data. The controllers execute a sensitivity analysis algorithm to determine a sensitivity level for each dynamic variable and corresponding historical data and select two or more pertinent dynamic variables based on the sensitivity level of each dynamic variable and the corresponding historical data. The controllers standardize the two or more pertinent dynamic variables into a plurality of generic dynamic variables, wherein the plurality of generic dynamic variables are in a standardized format that is applicable to any configuration of vehicle, and estimate the vehicle state based on the plurality of generic dynamic variables by one or more machine learning algorithms.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: September 10, 2024
    Assignees: GM GLOBAL TECNOLOGY OPERATIONS LLC, UNIVERSITY OF WATERLOO
    Inventors: Amir Khajepour, Amin Habibnejad Korayem, Ehsan Hashemi, Qingrong Zhao, SeyedAlireza Kasaiezadeh Mahabadi, Yechen Qin
  • Patent number: 11945265
    Abstract: A method for determining a tire tread wear estimation of a tire includes receiving, by a controller, a direct tire tread wear measurement, when available, performing an indirect tire tread wear estimation, performing a data fusion of the indirect tire tread wear estimation with the direct tire tread wear measurement when available, estimating a percentage tire life remaining and a mileage to end of tire life, and estimating a refined tire tread wear calibration coefficient for performing future indirect tire tread wear estimations.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: April 2, 2024
    Assignee: GM Global Technology Operations LLC
    Inventors: Mansoor Alghooneh, Joseph K. Moore, Christopher J. Mettrick, Gregory P. Kakert, Amir Khajepour, Amin Habibnejad Korayem, Yechen Qin, Ehsan Hashemi
  • Publication number: 20240092371
    Abstract: A universal machine learning based system for estimating a vehicle state of a vehicle includes one or more controllers executing instructions to receive a plurality of dynamic variables and corresponding historical data. The controllers execute a sensitivity analysis algorithm to determine a sensitivity level for each dynamic variable and corresponding historical data and select two or more pertinent dynamic variables based on the sensitivity level of each dynamic variable and the corresponding historical data. The controllers standardize the two or more pertinent dynamic variables into a plurality of generic dynamic variables, wherein the plurality of generic dynamic variables are in a standardized format that is applicable to any configuration of vehicle, and estimate the vehicle state based on the plurality of generic dynamic variables by one or more machine learning algorithms.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 21, 2024
    Inventors: Amir Khajepour, Amin Habibnejad Korayem, Ehsan Hashemi, Qingrong Zhao, SeyedAlireza Kasaiezadeh Mahabadi, Yechen Qin
  • Publication number: 20240078360
    Abstract: A method for modeling an identification model of a tire capacity, including: obtaining tire test data, wherein the tire test data comprises a tire angular velocity, a wheel effective radius, a tire slip angle, a wheel center velocity, a tire longitudinal force, a tire lateral force and a tire vertical force; obtaining a total slip ratio and a normalized tire force according to the tire test data; obtaining a tire capacity corresponding to the total slip ratio and the normalized tire force according to the tire test data; and performing training using the total slip ratio, the normalized tire force, and the tire capacity through a machine learning algorithm to complete the modeling of the identification model of the tire capacity.
    Type: Application
    Filed: June 4, 2021
    Publication date: March 7, 2024
    Inventors: Nan Xu, Amir Khajepour, Ehsan Hashemi
  • Patent number: 11634146
    Abstract: The present disclosure relates to a method and system for integrated path planning and path tracking control of an autonomous vehicle. The method includes: obtaining five input control variables and eleven system state variables of an autonomous vehicle at current time; constructing a vehicle path planning-tracking integrated state model according to the obtained variables at the current time; enveloping external contours of two autonomous vehicles using elliptical envelope curves to determine elliptical vehicle envelope curves of the two autonomous vehicles, respectively; determining time to collision (TTC) between the vehicles according to elliptical vehicle envelope curves and vehicle driving states; establishing an objective function of a model prediction controller (MPC) according to the model; and solving the objective function based on the TTC, and determining input control variables to the MPC at the next time. Autonomous vehicle collision avoidance can be achieved according to the present disclosure.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 25, 2023
    Inventors: Yechen Qin, Yiwei Huang, Ehsan Hashemi, Amir Khajepour, Zhenfeng Wang
  • Publication number: 20220410910
    Abstract: The present disclosure relates to a method and system for integrated path planning and path tracking control of an autonomous vehicle. The method includes: obtaining five input control variables and eleven system state variables of an autonomous vehicle at current time; constructing a vehicle path planning-tracking integrated state model according to the obtained variables at the current time; enveloping external contours of two autonomous vehicles using elliptical envelope curves to determine elliptical vehicle envelope curves of the two autonomous vehicles, respectively; determining time to collision (TTC) between the vehicles according to elliptical vehicle envelope curves and vehicle driving states; establishing an objective function of a model prediction controller (MPC) according to the model; and solving the objective function based on the TTC, and determining input control variables to the MPC at the next time. Autonomous vehicle collision avoidance can be achieved according to the present disclosure.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 29, 2022
    Applicant: Beijing Institute Of Technology
    Inventors: Yechen Qin, Yiwei Huang, Ehsan Hashemi, Amir Khajepour, Zhenfeng Wang
  • Publication number: 20220324266
    Abstract: A method for determining a tire tread wear estimation of a tire includes receiving, by a controller, a direct tire tread wear measurement, when available, performing an indirect tire tread wear estimation, performing a data fusion of the indirect tire tread wear estimation with the direct tire tread wear measurement when available, estimating a percentage tire life remaining and a mileage to end of tire life, and estimating a refined tire tread wear calibration coefficient for performing future indirect tire tread wear estimations.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS LLC, University of Waterloo
    Inventors: Mansoor Alghooneh, Joseph K. Moore, Christopher J. Mettrick, Gregory P. Kakert, Amir Khajepour, Amin Habibnejad Korayem, Yechen Qin, Ehsan Hashemi
  • Patent number: 11398110
    Abstract: A biometric imaging device configured to be arranged under an at least partially transparent display panel and configured to capture an image of an object located on an opposite side of the transparent display panel. The biometric imaging device comprises an image sensor comprising a photodetector pixel array; a transparent substrate covering the photodetector pixel array; a first set of microlenses configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array. The lenses in the first set have a first focal length. A second set of microlenses configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array. The lenses in the second set of microlenses have a second focal length which is different from the first focal length.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 26, 2022
    Assignee: FINGERPRINT CARDS ANACATUM IP AB
    Inventors: René Nilsson, Jun Liu, Ehsan Hashemi
  • Patent number: 11398104
    Abstract: There is an optical biometric imaging device configured to capture an image of an object in contact with an outer surface of the biometric imaging device, the biometric imaging device comprising: an image sensor comprising a photodetector pixel array and image sensor circuitry configured to capture an image of the object in contact with the outer surface of the imaging device; the image sensor comprising a first electrically conductive structure arranged adjacent to an active sensing area of the photodetector pixel array; a display panel arranged on top of and at a distance from the image sensor, the display panel comprising a second electrically conductive structure on a bottom side of the display panel and arranged to face the first electrically conductive structure of the image sensor; and capacitive readout circuitry arranged and configured to detect a capacitance between the first electrically conductive structure and the second electrically conductive structure.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 26, 2022
    Assignee: FINGERPRINT CARDS ANACATUM IP AB
    Inventors: Jun Liu, Ehsan Hashemi, Hans Martinsson, René Nilsson, Farzan Ghavanini
  • Patent number: 11308729
    Abstract: A biometric imaging device configured to capture an image of an object in contact with an outer surface of the imaging device, comprising: an at least partially transparent display panel comprising a repeating transmission pattern defined by an array of display unit cells, each display unit cell having the same transmission pattern; an image sensor comprising a photodetector pixel array arranged underneath the display panel; and a collimator layer arranged between the display panel and the image sensor that comprises a plurality of first collimating structures having a first collimator opening size and a plurality of second collimating structures having a second collimator opening size different from the first collimator opening size, wherein the respective collimator opening size and relative location of the first and second collimating structure in relation to the display unit cell is based on the transmission pattern of the display unit cell.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: April 19, 2022
    Assignee: FINGERPRINT CARDS ANACATUM IP AB
    Inventors: René Nilsson, Hans Martinsson, Ehsan Hashemi, Farzan Ghavanini
  • Patent number: 11301664
    Abstract: The invention relates to a method of reconstructing a fingerprint image from a plurality of fingerprint subimages captured by an optical microlens array fingerprint sensor, and a sensor system performing the method. In an aspect, a method of reconstructing a fingerprint image from a plurality of fingerprint subimages captured by an optical microlens array fingerprint sensor arranged under a touch-display of a device is provided.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: April 12, 2022
    Assignee: FINGERPRINT CARDS ANACATUM IP AB
    Inventors: Jun Liu, René Nilsson, Hans Martinsson, Ehsan Hashemi
  • Publication number: 20220043998
    Abstract: A biometric imaging device configured to be arranged under an at least partially transparent display panel and configured to capture an image of an object located on an opposite side of the transparent display panel. The biometric imaging device comprises an image sensor comprising a photodetector pixel array; a transparent substrate covering the photodetector pixel array; a first set of microlenses configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array. The lenses in the first set have a first focal length. A second set of microlenses configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array. The lenses in the second set of microlenses have a second focal length which is different from the first focal length.
    Type: Application
    Filed: September 17, 2018
    Publication date: February 10, 2022
    Applicant: Fingerprint Cards AB
    Inventors: René NILSSON, Jun LIU, Ehsan HASHEMI
  • Publication number: 20210326567
    Abstract: The invention relates to a method of reconstructing a fingerprint image from a plurality of fingerprint subimages captured by an optical microlens array fingerprint sensor, and a sensor system performing the method. In an aspect, a method of reconstructing a fingerprint image from a plurality of fingerprint subimages captured by an optical microlens array fingerprint sensor arranged under a touch-display of a device is provided.
    Type: Application
    Filed: September 12, 2018
    Publication date: October 21, 2021
    Applicant: Fingerprint Cards AB
    Inventors: Jun LIU, René NILSSON, Hans MARTINSSON, Ehsan HASHEMI
  • Publication number: 20210312157
    Abstract: There is an optical biometric imaging device configured to capture an image of an object in contact with an outer surface of the biometric imaging device, the biometric imaging device comprising: an image sensor comprising a photodetector pixel array and image sensor circuitry configured to capture an image of the object in contact with the outer surface of the imaging device; the image sensor comprising a first electrically conductive structure arranged adjacent to an active sensing area of the photodetector pixel array; a display panel arranged on top of and at a distance from the image sensor, the display panel comprising a second electrically conductive structure on a bottom side of the display panel and arranged to face the first electrically conductive structure of the image sensor; and capacitive readout circuitry arranged and configured to detect a capacitance between the first electrically conductive structure and the second electrically conductive structure.
    Type: Application
    Filed: September 5, 2018
    Publication date: October 7, 2021
    Applicant: Fingerprint Cards AB
    Inventors: Jun LIU, Ehsan HASHEMI, Hans MARTINSSON, René NILSSON, Farzan GHAVANINI
  • Patent number: 11046323
    Abstract: A method for estimation of a vehicle tire force includes: receiving, by a controller of a vehicle, a measured vehicle acceleration of the vehicle; receiving, by the controller, a measured wheel speed and a measured yaw rate of the vehicle; forming, by the controller, inertia matrices based on an inertia of rotating components of the vehicle; calculating torques at corners of the vehicle using the inertia matrices; estimating tire forces of the vehicle based on the measured vehicle acceleration, the measured wheel speed, and the inertia matrices; and controlling, by the controller, the vehicle, based on the plurality of estimated longitudinal and lateral tire forces.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 29, 2021
    Assignees: GM Global Technology Operations LLC, University of Waterloo
    Inventors: Ehsan Hashemi, SeyedAlireza Kasaiezadeh Mahabadi, Amir Khajepour, Xueying Kang, Jin-Jae Chen, Hualin Tan, James H. Holbrook, Bakhtiar B. Litkouhi
  • Patent number: 11030433
    Abstract: There is provided a biometric imaging device configured to be arranged under an at least partially transparent display panel and configured to capture an image of an object in contact with an outer surface of the display panel. The biometric imaging device comprises: an image sensor comprising a photodetector pixel array; a transparent substrate arranged to cover the image sensor; an opaque layer covering an upper surface of the transparent substrate, wherein the opaque layer further comprises a plurality of separate openings; and a plurality of microlenses, each microlens being arranged in alignment with a respective opening of the opaque layer; wherein each microlens is configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 8, 2021
    Assignee: Fingerprint Cards AB
    Inventors: René Nilsson, Hans Martinsson, Ehsan Hashemi
  • Publication number: 20200410201
    Abstract: A biometric imaging device configured to capture an image of an object in contact with an outer surface of the imaging device, comprising: an at least partially transparent display panel comprising a repeating transmission pattern defined by an array of display unit cells, each display unit cell having the same transmission pattern; an image sensor comprising a photodetector pixel array arranged underneath the display panel; and a collimator layer arranged between the display panel and the image sensor that comprises a plurality of first collimating structures having a first collimator opening size and a plurality of second collimating structures having a second collimator opening size different from the first collimator opening size, wherein the respective collimator opening size and relative location of the first and second collimating structure in relation to the display unit cell is based on the transmission pattern of the display unit cell.
    Type: Application
    Filed: March 5, 2019
    Publication date: December 31, 2020
    Applicant: Fingerprint Cards AB
    Inventors: René NILSSON, Hans MARTINSSON, Ehsan HASHEMI, Farzan GHAVANINI
  • Publication number: 20200380237
    Abstract: There is provided a biometric imaging device configured to be arranged under an at least partially transparent display panel and configured to capture an image of an object in contact with an outer surface of the display panel. The biometric imaging device comprises: an image sensor comprising a photodetector pixel array; a transparent substrate arranged to cover the image sensor; an opaque layer covering an upper surface of the transparent substrate, wherein the opaque layer further comprises a plurality of separate openings; and a plurality of microlenses, each microlens being arranged in alignment with a respective opening of the opaque layer; wherein each microlens is configured to redirect light through the transparent substrate and onto a subarray of pixels in the photodetector pixel array.
    Type: Application
    Filed: December 10, 2018
    Publication date: December 3, 2020
    Applicant: Fingerprint Cards AB
    Inventors: René NILSSON, Hans MARTINSSON, Ehsan HASHEMI
  • Publication number: 20200317198
    Abstract: A method for estimation of a vehicle tire force includes: receiving, by a controller of a vehicle, a measured vehicle acceleration of the vehicle; receiving, by the controller, a measured wheel speed and a measured yaw rate of the vehicle; forming, by the controller, inertia matrices based on an inertia of rotating components of the vehicle; calculating torques at corners of the vehicle using the inertia matrices; estimating tire forces of the vehicle based on the measured vehicle acceleration, the measured wheel speed, and the inertia matrices; and controlling, by the controller, the vehicle, based on the plurality of estimated longitudinal and lateral tire forces.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Applicants: GM Global Technology Operations LLC, University of Waterloo
    Inventors: Ehsan Hashemi, SeyedAlireza Kasaiezadeh Mahabadi, Amir Khajepour, Xueying Kang, Jin-Jae Chen, Hualin Tan, James H. Holbrook, Bakhtiar B. Litkouhi
  • Patent number: 10407034
    Abstract: A combined slip based driver command interpreter for a vehicle is provided which may be communicatively coupled to a steering wheel angle sensor, an acceleration pedal position sensor and a brake pedal position sensor, the combined slip based driver command interpreter including, but not limited to a memory configured to store a non-linear combined lateral slip model and a non-linear combined longitudinal slip model, and a processor, the processor configured to determine a driver's intended vehicle lateral velocity and a driver's intended vehicle yaw rate based upon the angle of the steering wheel, the position of the acceleration pedal, the position of the brake pedal, a longitudinal velocity of the vehicle, the non-linear combined lateral slip model and the non-linear combined longitudinal slip model.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 10, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, James H. Holbrook, Hualin Tan, Ehsan Hashemi, Bakhtiar B. Litkouhi