Patents by Inventor Ehsan Khajeh
Ehsan Khajeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10949030Abstract: Acoustic transducers can be formed form piezoelectric materials including one or more curved (non-linear) segments. The piezoelectric material can be shear poled such that a poling direction of the piezoelectric material can follow the curvature of the piezoelectric material. The piezoelectric material can also have a unidirectional poling direction. In some examples, the piezoelectric material can be a closed ring with a circular or partially circular shape. A shear poling process for a piezoelectric material with curves can include shear poling segments of the piezoelectric material with one or more sets of poling electrodes. The poling electrodes of a respective one of the one or more sets of poling electrodes can be coupled to the same side of the piezoelectric material.Type: GrantFiled: September 6, 2018Date of Patent: March 16, 2021Assignee: Apple Inc.Inventors: Ehsan Khajeh, Aaron Scott Tucker, Brian Michael King, Marcus Yip
-
Publication number: 20210064177Abstract: Ultrasonic force detection systems and methods can be based on propagation of ultrasonic waves in a user's body (e.g., in a user's digit). An amount of force can be determined using time-of-flight (TOF) techniques of one or more ultrasonic waves propagating in the user's body. In some examples, an electronic device including a transducer can be coupled to a digit, and can transmit ultrasonic waves into the digit. As the wave propagates through the thickness of the digit, a reflection of at least a portion of the transmitted wave can occur due to the bone and/or due to reaching the opposite side of the digit (e.g., finger pad). One or more reflections can be measured to determine the amount of force.Type: ApplicationFiled: August 19, 2020Publication date: March 4, 2021Inventors: Ehsan KHAJEH, George Ho Yin MAK, Marcus YIP, Brian Michael KING, Aaron Scott TUCKER, Jason S. GRIESBACH, Paul X. WANG, Alex Joseph LEHMANN
-
Patent number: 10877606Abstract: Acoustic touch sensing system architectures and methods for acoustic touch sensing can be used to detect a position of an object touching a surface. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a material. The location of the object can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water. In some examples, techniques such as isolation and absorption of acoustic energy can be used to mitigate acoustic energy reflected by portions of the electronic device and interfere with the acoustic touch sensing operation.Type: GrantFiled: April 22, 2019Date of Patent: December 29, 2020Assignee: Apple Inc.Inventors: Ehsan Khajeh, Ala'a Al-Okaily, Brian Michael King, George Ho Yin Mak, Supratik Datta
-
Publication number: 20200333914Abstract: Acoustic touch sensing system architectures and methods for acoustic touch sensing can be used to detect a position of an object touching a surface. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a material. The location of the object can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water. In some examples, techniques such as isolation and absorption of acoustic energy can be used to mitigate acoustic energy reflected by portions of the electronic device and interfere with the acoustic touch sensing operation.Type: ApplicationFiled: April 22, 2019Publication date: October 22, 2020Inventors: Ehsan KHAJEH, Ala'a AL-OKAILY, Brian Michael KING, George Ho Yin MAK, Supratik DATTA
-
Patent number: 10802651Abstract: This relates to system architectures, apparatus and methods for acoustic touch detection (touch sensing) and exemplary applications of the system architectures, apparatus and methods. In some examples, the acoustic touch sensing techniques described herein can be used on a glass surface of a display or touch screen. In some examples, an acoustic touch sensing system can be configured to be insensitive to contact on the device surface by water, and thus acoustic touch sensing can be used for touch sensing in devices that are likely to become wet or fully submerged in water.Type: GrantFiled: January 24, 2019Date of Patent: October 13, 2020Assignee: Apple Inc.Inventors: Ehsan Khajeh, Aaron Scott Tucker, Brian Michael King, George Ho Yin Mak, Marcus Yip, Mohammad Yeke Yazdandoost
-
Patent number: 10725573Abstract: Acoustic touch sensing systems can include a mechanically integrated structure including multiple acoustic transducers. For example, an annular structure including one or more piezoelectric segments can be fabricated and then coupled to a front crystal/cover glass. A single structure can simplify the structural integration of the device, can provide a mechanically reliable and stable structure for improved structural integrity of the system, and can provide for improved water sealing for a waterproof or water resistant device. The piezoelectric material in the annular structure can be shear poled such that a poling direction of the piezoelectric material can follow the curvature of the annular piezoelectric structure.Type: GrantFiled: August 6, 2018Date of Patent: July 28, 2020Assignee: Apple Inc.Inventors: Anuranjini Pragada, George Ho Yin Mak, Ehsan Khajeh, Brian Michael King, Maegan K. Spencer
-
Patent number: 10606418Abstract: An input device outfitted with one or more ultrasonic transducers can determine the location of one or more objects in contact with the input device. For example, the input device can include one or more transducers disposed in a ring around the circumference of the input device or in an array of rings along the length of the input device. The ultrasonic transducers can be used to detect the position of the one or more touching objects in at least one dimension, for example. In some examples, the one or more ultrasonic transducers can produce directional ultrasonic waves.Type: GrantFiled: March 16, 2018Date of Patent: March 31, 2020Assignee: Apple Inc.Inventors: Marduke Yousefpor, Aaron Scott Tucker, Brian Michael King, Ehsan Khajeh, Marcus Yip, Mohammad Yeke Yazdandoost, Wesley W. Zuber
-
Publication number: 20200042130Abstract: Acoustic touch sensing systems can include a mechanically integrated structure including multiple acoustic transducers. For example, an annular structure including one or more piezoelectric segments can be fabricated and then coupled to a front crystal/cover glass. A single structure can simplify the structural integration of the device, can provide a mechanically reliable and stable structure for improved structural integrity of the system, and can provide for improved water sealing for a waterproof or water resistant device. The piezoelectric material in the annular structure can be shear poled such that a poling direction of the piezoelectric material can follow the curvature of the annular piezoelectric structure.Type: ApplicationFiled: August 6, 2018Publication date: February 6, 2020Inventors: Anuranjini PRAGADA, George Ho Yin MAK, Ehsan KHAJEH, Brian Michael KING, Maegan K. SPENCER
-
Publication number: 20190346969Abstract: Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.Type: ApplicationFiled: July 26, 2019Publication date: November 14, 2019Inventors: Marcus YIP, Aaron Scott TUCKER, Ehsan KHAJEH, Brian Michael KING
-
Publication number: 20190243047Abstract: A polarizer disposed between a transducer and a surface in which acoustic waves propagate can be used to filter out certain types of acoustic energy. For example, the polarizer can be used with a shear-polarized transducer to pass shear waves and filter out compressional waves that may interact with water, thereby improving water rejection. In some examples, the polarizer can include one or more layers of piezoelectric material with a poling direction different than (e.g., orthogonal to) the poling direction of the transducer. Energy of compressional waves may be extracted by one or more external electric circuits. In some examples, the polarizer can be a magneto-elastic polarizer. In some examples, the polarizer can be a mechanical polarizer.Type: ApplicationFiled: February 6, 2019Publication date: August 8, 2019Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, Marcus YIP
-
Publication number: 20190235656Abstract: This relates to system architectures, apparatus and methods for acoustic touch detection (touch sensing) and exemplary applications of the system architectures, apparatus and methods. In some examples, the acoustic touch sensing techniques described herein can be used on a glass surface of a display or touch screen. In some examples, an acoustic touch sensing system can be configured to be insensitive to contact on the device surface by water, and thus acoustic touch sensing can be used for touch sensing in devices that are likely to become wet or fully submerged in water.Type: ApplicationFiled: January 24, 2019Publication date: August 1, 2019Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, George Ho Yin MAK, Marcus YIP, Mohammad YEKE YAZDANDOOST
-
Patent number: 10325136Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.Type: GrantFiled: September 23, 2016Date of Patent: June 18, 2019Assignee: Apple Inc.Inventors: Mohammad Yeke Yazdandoost, Marduke Yousefpor, Brian Michael King, Ehsan Khajeh, Marcus Yip, Giovanni Gozzini, Aaron Tucker
-
Patent number: 10275638Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.Type: GrantFiled: September 23, 2016Date of Patent: April 30, 2019Assignee: Apple Inc.Inventors: Marduke Yousefpor, Mohammad Yeke Yazdandoost, Brian Michael King, Aaron Tucker, Marcus Yip, Ehsan Khajeh
-
Publication number: 20190095045Abstract: Acoustic transducers can be formed form piezoelectric materials including one or more curved (non-linear) segments. The piezoelectric material can be shear poled such that a poling direction of the piezoelectric material can follow the curvature of the piezoelectric material. The piezoelectric material can also have a unidirectional poling direction. In some examples, the piezoelectric material can be a closed ring with a circular or partially circular shape. A shear poling process for a piezoelectric material with curves can include shear poling segments of the piezoelectric material with one or more sets of poling electrodes. The poling electrodes of a respective one of the one or more sets of poling electrodes can be coupled to the same side of the piezoelectric material.Type: ApplicationFiled: September 6, 2018Publication date: March 28, 2019Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, Marcus YIP
-
Patent number: 10198610Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.Type: GrantFiled: September 23, 2016Date of Patent: February 5, 2019Assignee: Apple Inc.Inventors: Marduke Yousefpor, Mohammad Yeke Yazdandoost, Brian Michael King, Marcus Yip, Ehsan Khajeh, Aaron Tucker
-
Publication number: 20180341359Abstract: Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.Type: ApplicationFiled: May 24, 2018Publication date: November 29, 2018Inventors: Ehsan KHAJEH, Brian Michael KING, Mohammad YEKE YAZDANDOOST, Marcus YIP, Aaron Scott TUCKER, Marduke YOUSEFPOR, Peter Jon KARDASSAKIS, Giovanni GOZZINI, Supratik DATTA, Asif HUSSAIN
-
Publication number: 20180341347Abstract: Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.Type: ApplicationFiled: May 24, 2018Publication date: November 29, 2018Inventors: Marduke YOUSEFPOR, Mohammad YEKE YAZDANDOOST, Aaron Scott TUCKER, Marcus YIP, Ehsan KHAJEH, Brian Michael KING, Giovanni GOZZINI
-
Patent number: 10094945Abstract: An embodiment of a method of estimating a property of an earth formation includes: disposing an acoustic tool in a borehole in an earth formation, the acoustic tool including an acoustic source and at least one acoustic receiver; transmitting acoustic signals into the borehole by the acoustic source, the acoustic signals having at least one linear guided wave mode that propagates along a surface of the borehole; receiving the acoustic signals by at least one receiver; analyzing, by a processor, the acoustic signals to measure non-linear harmonic waves generated by the formation is response to the at least one linear guided wave mode; and estimating a property of the formation based on the measured non-linear harmonic waves.Type: GrantFiled: March 24, 2014Date of Patent: October 9, 2018Assignee: BAKER HUGHES, A GE COMPANY, LLCInventors: Ehsan Khajeh, Yang Liu
-
Publication number: 20180284946Abstract: An input device outfitted with one or more ultrasonic transducers can determine the location of one or more objects in contact with the input device. For example, the input device can include one or more transducers disposed in a ring around the circumference of the input device or in an array of rings along the length of the input device. The ultrasonic transducers can be used to detect the position of the one or more touching objects in at least one dimension, for example. In some examples, the one or more ultrasonic transducers can produce directional ultrasonic waves.Type: ApplicationFiled: March 16, 2018Publication date: October 4, 2018Inventors: Marduke Yousefpor, Aaron Scott Tucker, Brian Michael King, Ehsan Khajeh, Marcus Yip, Mohammad Yeke Yazdandoost, Wesley W. Zuber
-
Publication number: 20180284947Abstract: The present disclosure relates to one or more intermediate layers located on a surface of a cover material of an acoustic touch screen. In some examples, the one or more layers can include one or more intermediate layers. The one or more intermediate layers can include a first layer including a plurality of features and a second layer located between the first layer and the cover material. In a touch condition, the touch object can apply a force to the top surface of the acoustic touch sensor. The applied force can create one or more local bends causing the plurality of features to move closer to the cover material and causing one or more surface discontinuities in the cover material. The acoustic waves can undergo reflections (e.g., causing the signal to be attenuated) due to the discontinuities located in the path of the wave propagation.Type: ApplicationFiled: March 31, 2017Publication date: October 4, 2018Inventors: Ehsan KHAJEH, Brian Michael KING, Marcus YIP, Aaron Scott TUCKER, Mohammad YEKE YAZDANDOOST, Marduke YOUSEFPOR, Giovanni GOZZINI