Patents by Inventor Ehsan Khish Ardestani Zadeh

Ehsan Khish Ardestani Zadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210349965
    Abstract: A device (e.g., an application-specific integrated circuit chip) includes a matrix transpose component, a matrix processing component, a data alignment component, and a data reduction component. The matrix transpose component is configured to transpose an input matrix of elements to output an output matrix of the elements that have been transposed, wherein: each element of the input matrix of elements is represented using a first number of bits, each value of a group of values stored in the input matrix is represented using a second number of bits greater than the first number of bits, and each value of the group of values is stored as split segments across more than one element of the elements of the input matrix.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 11, 2021
    Inventors: Krishnakumar Narayanan Nair, Thomas Mark Ulrich, Ehsan Khish Ardestani Zadeh
  • Publication number: 20210349690
    Abstract: A device (e.g., an integrated circuit chip) includes a dot product processing component, a data alignment component, and an accumulator. The dot product processing component is configured to calculate a dot product of a first group of elements stored in a first storage unit with a second group of elements, wherein: each element of the first group of elements is represented using a first number of bits, each value of a group of values stored in the first storage unit is represented using a second number of bits greater than the first number of bits, and each value of the group of values is stored as split segments across more than one element of the elements of the first group of elements. The data alignment component is configured to receive results of the dot product processing component and modify one or more of the results of the dot product processing component. The accumulator is configured to sum outputs of the data alignment component to at least in part determine a sum of the group of values.
    Type: Application
    Filed: May 7, 2020
    Publication date: November 11, 2021
    Inventors: Thomas Mark Ulrich, Krishnakumar Narayanan Nair, Ehsan Khish Ardestani Zadeh
  • Publication number: 20210334072
    Abstract: A processor system comprises a plurality of dot product processor units and element-wise multiplication units. The dot product processor units perform a depthwise convolution of a data matrix with a separate depthwise convolution weight matrix for each data matrix channel. Each dot product processor unit performs at least a portion of the depthwise convolution for one or more data matrix channels. The element-wise multiplication units perform multiplication operations of a pointwise convolution. Each element-wise multiplication unit applies to each depthwise convolution partial result element received from one or more of the dot product processor units a corresponding data element from each of a plurality of pointwise convolution weight filters to determine element-wise multiplication unit results. The processor system sums together different groups of data elements from the element-wise multiplication unit results to at least in part calculate different data elements of a result of the pointwise convolution.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Rakesh Komuravelli, Krishnakumar Narayanan Nair, Abdulkadir Utku Diril, Ehsan Khish Ardestani Zadeh, Yuchen Hao, Martin Schatz, Thomas Mark Ulrich, Olivia Wu, Anup Ramesh Kadkol, Amin Firoozshahian
  • Publication number: 20210319076
    Abstract: A processor system comprises a plurality of processing elements. Each processing element includes a corresponding convolution processor unit configured to perform a portion of a groupwise convolution. The corresponding convolution processor unit determines multiplication results by multiplying each data element of a portion of data elements in a convolution data matrix with a corresponding data element in a corresponding groupwise convolution weight matrix. The portion of data elements in the convolution data matrix that are multiplied belong to different channels and different groups. For each specific channel of the different channels, the corresponding convolution processor unit sums together at least some of the multiplication results belonging to the same specific channel to determine a corresponding channel convolution result data element.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventors: Rakesh Komuravelli, Krishnakumar Narayanan Nair, Abdulkadir Utku Diril, Ehsan Khish Ardestani Zadeh, Yuchen Hao, Martin Schatz, Thomas Mark Ulrich, Olivia Wu, Anup Ramesh Kadkol, Amin Firoozshahian
  • Patent number: 11138292
    Abstract: An electronic circuit performs depthwise convolution of an input matrix with a kernel matrix to generate an output matrix. In each of a plurality of rounds of operations, a row of kernel matrix elements is selected for the round of operations, and applied to the input matrix to obtain an intermediate data array corresponding to the selected row of kernel elements. The electronic circuit includes a plurality of subcircuits operable in parallel to generate, in each operation, a set of intermediate data elements in the intermediate data array. Each subcircuit generates a respective intermediate data element that is the sum of a respective row of the input matrix elements weighted by a set of weight elements including the selected row of kernel elements and at least one zero element. The selected row of kernel elements is successively shifted among the set of weight elements in the round of operations.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: October 5, 2021
    Assignee: FACEBOOK, INC.
    Inventors: Krishnakumar Nair, Abdulkadir Utku Diril, Dheevatsa Mudigere, Ehsan Khish Ardestani Zadeh, Olivia Wu, Yuchen Hao
  • Publication number: 20210294875
    Abstract: A processor system comprises a hardware channel convolution processor unit and dot product processor unit. The channel convolution processor unit is configured to perform depthwise convolution, including by multiplying each data element of a first group of data elements of a convolution data matrix with a corresponding data element of a second group of data elements of a plurality of depthwise convolution weight matrices and summing together, for each specific channel, multiplication results corresponding to the specific channel to determine one corresponding result data element in a corresponding channel convolution result matrix to calculate a portion of depthwise convolution results.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Rakesh Komuravelli, Krishnakumar Narayanan Nair, Abdulkadir Utku Diril, Ehsan Khish Ardestani Zadeh, Yuchen Hao, Martin Schatz, Thomas Mark Ulrich, Olivia Wu, Anup Ramesh Kadkol, Amin Firoozshahian
  • Publication number: 20210271451
    Abstract: A processor system comprises two groups of registers and a hardware channel convolution processor unit. The first group of registers is configured to store data elements of channels of a portion of a convolution data matrix. Each register stores at least one data element from each channel. The second group of registers is configured to store data elements of convolution weight matrices including a separate matrix for each channel. Each register stores at least one data element from each matrix. The hardware channel convolution processor unit is configured to multiply each data element in a first and second portion of the first group of registers with a corresponding data element in the second group of registers to determine corresponding multiplication results and sum together the multiplication results for each specific channel to determine two corresponding channel convolution result data elements in a corresponding channel convolution result matrix.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Krishnakumar Narayanan Nair, Rakesh Komuravelli, Abdulkadir Utku Diril, Ehsan Khish Ardestani Zadeh, Yuchen Hao, Martin Schatz, Thomas Mark Ulrich, Olivia Wu, Anup Ramesh Kadkol, Amin Firoozshahian
  • Publication number: 20210256363
    Abstract: A processor system comprises a first and second group of registers and a hardware channel convolution processor unit. The first group of registers is configured to store data elements of channels of a portion of a convolution data matrix. Each register stores at least one data element from each channel. The second group of registers is configured to store data elements of convolution weight matrices including a separate convolution weight matrix for each channel. Each register stores at least one data element from each convolution weight matrix. The hardware channel convolution processor unit is configured to multiply each data element in the first group of registers with a corresponding data element in the second group of registers and sum together the multiplication results for each specific channel to determine corresponding channel convolution result data elements in a corresponding channel convolution result matrix.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 19, 2021
    Inventors: Krishnakumar Narayanan Nair, Rakesh Komuravelli, Abdulkadir Utku Diril, Ehsan Khish Ardestani Zadeh, Yuchen Hao, Martin Schatz, Thomas Mark Ulrich, Olivia Wu, Anup Ramesh Kadkol, Amin Firoozshahian
  • Publication number: 20210192359
    Abstract: The disclosed computer-implemented method may include (1) receiving, at a hardware accelerator that supports an ANN, an activation data set that is to undergo a convolution operation via a filter kernel of the ANN, (2) receiving, at the hardware accelerator, an argument indicating that the filter kernel exceeds at least one boundary of the activation data set when slid across a certain position during the convolution operation, (3) determining, based at least in part on the argument, that the hardware accelerator is to generate padding data at the boundary of the activation data set in connection with the certain position of the filter kernel, and then (4) performing, at the hardware accelerator, the convolution operation by processing a portion of the activation data set and the padding data when the filter kernel slides across the certain position. Various other systems and methods are also disclosed.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Ehsan Khish Ardestani Zadeh, Martin Schatz, Krishnakumar Narayanan Nair, Yuchen Hao, Abdulkadir Utku Diril, Rakesh Komuravelli
  • Publication number: 20210125044
    Abstract: A first group of elements is element-wise multiplied with a second group of elements using a plurality of multipliers belonging to a matrix multiplication hardware unit. Results of the plurality of multipliers are added together using a hierarchical tree of adders belonging to the matrix multiplication hardware unit and a final result of the hierarchical tree of adders or any of a plurality of intermediate results of the hierarchical tree of adders is selectively provided for use in determining an output result matrix.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: Yuchen Hao, Krishnakumar Narayanan Nair, Ehsan Khish Ardestani Zadeh, Rakesh Komuravelli, Abdulkadir Utku Diril, Thomas Mark Ulrich
  • Publication number: 20210124794
    Abstract: A system comprises a data input vector unit, a weight input vector unit, and a plurality of calculation units of a matrix processor unit. The data input vector unit is configured to concurrently receive elements of different rows of a first and second data matrix. The weight input vector unit is configured to receive a combined weight vector and at least in part concurrently provide obtained weight elements of a first and second weight matrix to a corresponding first and second group of calculation units. Each calculation unit of the first and second group of calculation units is configured to multiply elements from the data input vector unit with elements of the corresponding weight matrix from the weight input vector unit and sum together multiplication results of the corresponding calculation unit to at least in part determine a corresponding element in a first or second convolution result matrix.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: Krishnakumar Narayanan Nair, Olivia Wu, Ehsan Khish Ardestani Zadeh, Abdulkadir Utku Diril, Thomas Mark Ulrich, Yuchen Hao, Rakesh Komuravelli, Aravind Kalaiah
  • Publication number: 20210103429
    Abstract: A processor system comprises one or more logic units configured to receive a processor instruction identifying a first floating point number to be multiplied with a second floating point number. The floating point numbers are each decomposed into a group of a plurality of component numbers, wherein a number of bits used to represent each floating point number is greater than a number of bits used to represent any component number in each group of the plurality of component numbers. The component numbers of the first group are multiplied with the component numbers of the second group to determine intermediate multiplication results that are summed together to determine an effective result that represents a result of multiplying the first floating point number with the second floating point number.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 8, 2021
    Inventors: Krishnakumar Narayanan Nair, Anup Ramesh Kadkol, Ehsan Khish Ardestani Zadeh, Olivia Wu, Yuchen Hao, Thomas Mark Ulrich, Rakesh Komuravelli
  • Publication number: 20210049229
    Abstract: A system comprises a matrix processor unit that includes a first type of register, a group of a second type of registers, and a plurality of calculation units. The first type of register is configured to concurrently store values from different rows of a first matrix. At least a portion of the first type of register is logically divided into groups of elements, and each of the groups corresponds to a different row of the first matrix. Each of the second type of registers is configured to concurrently store values from a plurality of different rows of a second matrix. Each of the calculation units corresponds to one of the second type of registers and is configured to at least in part determine a corresponding element in a result matrix of convoluting the second matrix with the first matrix.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Krishnakumar Nair, Abdulkadir Utku Diril, Dheevatsa Mudigere, Olivia Wu, Ehsan Khish Ardestani Zadeh, Yuchen Hao
  • Patent number: 10872038
    Abstract: A system comprises a memory, a plurality of memory banks, and an organizer. The memory is configured to store elements of a matrix, wherein the elements are distributed into overlapping subgroups and each shares at least one element of the matrix with another overlapping subgroup. The plurality of memory banks is configured to store the overlapping subgroups, wherein the subgroups are distributed among the memory banks using a circular shifted pattern. The organizer is configured to read specific ones of the overlapping subgroups in the plurality of memory banks in a specified pattern associated with transposing the matrix.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: December 22, 2020
    Assignee: Facebook, Inc.
    Inventors: Krishnakumar Narayanan Nair, Ehsan Khish Ardestani Zadeh, Olivia Wu, Yuchen Hao
  • Publication number: 20200364047
    Abstract: A microprocessor comprises a shared memory and a processing element. The processing element includes a matrix processor unit, a transpose hardware unit, a scatter hardware unit, and a gather hardware unit. The matrix processor unit is configured to perform a matrix operation. The transpose hardware unit is configured to perform a matrix transpose operation. The scatter hardware unit is configured to place data to the shared memory at locations selected for an output data layout conversion. The gather hardware unit is configured to obtain input data from the shared memory from non-contiguous locations for an input data layout conversion.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Ehsan Khish Ardestani Zadeh, Krishnakumar Nair, Abdulkadir Utku Diril, Dheevatsa Mudigere, Olivia Wu, Yuchen Hao