Patents by Inventor Eiichi Akutsu

Eiichi Akutsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7542646
    Abstract: There is provided an optical waveguide including: a waveguide core through which light propagates; a cavity that is present inside the waveguide core so as to be open at least one end in the thickness direction of the waveguide core; a layer-form first cladding having a lower refractive index than the waveguide core, and sealing at least one of the at least one opening of the cavity to thereby close the opening of the cavity; and a second cladding having a lower refractive index than the waveguide core, and surrounding the waveguide core. There is also provided a method of manufacturing the optical waveguide.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: June 2, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 7539384
    Abstract: An optical waveguide comprises: a core for propagating light; a clad covering the core; and a line convex part extending along a line different from the core, the line convex part comprising a cavity used as a positioning mark inside the line convex part.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: May 26, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20090103856
    Abstract: An optical waveguide film of an optical reception and transmission module guides light. A first optical path converting part of an optical transmission unit guides light. A mirror surface of a first optical path converting part bends light which is emitted from a light emitting element and which enters the first optical path converting part. A first holding member holds the light emitting element and the first optical path converting part. A second optical path converting part of an optical reception unit guides light. A mirror surface of a second optical path converting part bends the guided light. A second holding member holds the light receiving element and the second optical path converting part. A first supporting member supports the first end portion of the optical waveguide film. A second supporting member supports the second end portion of the optical waveguide film.
    Type: Application
    Filed: July 21, 2008
    Publication date: April 23, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Shigemi OHTSU, Toshihiko SUZUKI, Masahiro IGUSA, Kazutoshi YATSUDA, Akira FUJII, Keishi SHIMIZU, Eiichi AKUTSU
  • Publication number: 20090103875
    Abstract: An optical waveguide includes: a center layer including at least two core layers whose edges are on substantially the same plane, and a first cladding layer provided between adjacent core layers; and a second cladding layer provided at least on both of front and rear surfaces of the center layer. At least surfaces of the core layer and the first cladding layer that are in contact with the second cladding layer include at least one resin selected from the group consisting of a resin having a hydroxyl group and a resin containing a silicon-silicon bond at a main chain thereof, and the second cladding layer includes a silicone resin.
    Type: Application
    Filed: August 8, 2008
    Publication date: April 23, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Keishi SHIMIZU, Masahiro Igusa, Akira Fujii, Toshihiko Suzuki, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20090103858
    Abstract: An optical waveguide film includes an optical waveguide film main body having an optical waveguide core through which light is propagated, and a cladding portion that encloses the optical waveguide core and has a lower refractive index than that of the optical waveguide core; and an electric wiring layer formed on at least a part of a principal surface of the optical waveguide film main body.
    Type: Application
    Filed: July 31, 2008
    Publication date: April 23, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Masahiro Igusa, Kazutoshi Yatsuda, Akira Fujii, Keishi Shimizu, Eiichi Akutsu
  • Publication number: 20090103857
    Abstract: An optical transmission unit of an optical reception and transmission module holds a first end portion of the optical waveguide film on the first holding member so that light emitted from the light emitting device is coupled to an incident end surface of the optical waveguide. An optical reception unit holds a second end portion of the optical waveguide film on the second holding member so that light emitted from an emitting end surface of the optical waveguide is received by the light receiving device. At least the optical waveguide film is covered with flame-retardant resin having flame retardancy of HB or higher according to a UL-94 test and a minimum bending radius of the optical waveguide film covered with the flame-retardant resin and having a flame-retardant resin layer formed on its surface is from 1 mm to 3 mm.
    Type: Application
    Filed: July 24, 2008
    Publication date: April 23, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Shigemi OHTSU, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Masahiro Igusa, Akira Fujii, Eiichi Akutsu
  • Publication number: 20090103873
    Abstract: An optical waveguide includes a layer A and a plurality of cores enclosed in a cladding. During production of the optical waveguide, a layered film including alternate layers of a core layer and a cladding layer is cut so as to form a groove that penetrates through the layered film in a thickness direction and so as to form a plurality of core portions, and the layer A is provided so as to partially fill the groove depthwise and so as to maintain spacing between the plurality of core portions before the core portions is enclosed by the cladding.
    Type: Application
    Filed: July 14, 2008
    Publication date: April 23, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Akira FUJII, Toshihiko SUZUKI, Keishi SHIMIZU, Kazutoshi YATSUDA, Masahiro IGUSA, Shigemi OHTSU, Eiichi AKUTSU
  • Publication number: 20090079099
    Abstract: A polymer optical circuit having a waveguide core and a clad surrounding the waveguide core is fabricated by: structuring a mold by a main mold and an auxiliary mold, the main mold being formed from an elastomer for mold formation and having a concavity corresponding to a portion of the waveguide core except for an end portion of a specific shape, an injection hole for injecting a resin for core formation into the concavity, and a suction hole for suctioning-out the resin for core formation injected in the concavity from the injection hole, and the auxiliary mold being formed from an elastomer for mold formation and having a concavity of a shape corresponding to the end portion of the specific shape of the waveguide core; firmly sticking a clad base film, that structures a portion of the clad, to a surface of the mold at a side where the concavity is formed; filling a resin for core formation into the concavity by injecting the resin for core formation into the concavity from the injection hole of the mold an
    Type: Application
    Filed: April 8, 2008
    Publication date: March 26, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Keishi SHIMIZU, Akira Fujii, Toshihiko Suzuki, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20090080848
    Abstract: The present invention provides an optical waveguide including: a cladding; at least one core embedded in the cladding; and a colored layer that is provided at a portion substantially overlapping with the core when viewed from a direction substantially perpendicular to the principal surfaces of the optical waveguide, and that is not in contact with the core.
    Type: Application
    Filed: March 27, 2008
    Publication date: March 26, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Toshihiko Suzuki, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu
  • Publication number: 20090067786
    Abstract: An optical waveguide device includes: a waveguide core that guides light; a mirror surface that deflects light coming from the waveguide core by 90°; a main waveguide core that guides light deflected at the mirror surface; a waveguide core for monitoring that branches the light deflected at the mirror surface off from the main waveguide core, and guides the light in a different direction, the mirror surface being disposed at a branching portion of the waveguide core for monitoring; and a clad portion that surrounds the waveguide core, the main waveguide core and the waveguide core for monitoring.
    Type: Application
    Filed: March 21, 2008
    Publication date: March 12, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi OHTSU, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu
  • Publication number: 20090067796
    Abstract: A polymer optical waveguide includes: an optical waveguide portion that includes a core and a cladding each formed of polymer material; and a conductive line that is installed along the core integrally with the optical waveguide portion, and that has an electrode surface for external connection exposed on a surface different from an end surface of the optical waveguide portion.
    Type: Application
    Filed: March 27, 2008
    Publication date: March 12, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Akira FUJII, Keishi SHIMIZU, Shigemi OHTSU, Kazutoshi YATSUDA, Toshihiko SUZUKI, Eiichi AKUTSU
  • Publication number: 20090068766
    Abstract: An optical element mounting method includes: illuminating ultraviolet light onto a polymer optical waveguide device; under the ultraviolet light illumination, capturing, by an image pickup device, the polymer optical waveguide device including a light incident/exiting position of a waveguide core; and judging, from a difference between bright and dark in a captured image, that a portion brighter than other portions or a portion darker than other portions is the light incident/exiting position of the waveguide core.
    Type: Application
    Filed: April 2, 2008
    Publication date: March 12, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Toshihiko Suzuki, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu
  • Publication number: 20080289366
    Abstract: A production method of an optical waveguide includes: preparing a laminated body that includes a first clad layer and at least a core layer laminated on the first clad layer; forming a light propagating optical waveguide core by cutting the core layer by use of a dicing saw from a side where the core layer is laminated while intruding an edge of a blade portion of the dicing saw into the first clad layer so as to partially cut the first clad layer; and embedding at least a cut portion of the laminated body with a second clad layer.
    Type: Application
    Filed: March 14, 2008
    Publication date: November 27, 2008
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Toshihiko SUZUKI, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Akira Fujii, Eiichi Akutsu
  • Publication number: 20080282741
    Abstract: A production method of an optical waveguide includes: preparing a laminated body that includes a first clad layer and, on the first clad layer, a core layer and a second clad layer alternately laminated in this order so that two or more of the core layer are included in the laminated body; forming a light-propagating waveguide core by cutting the laminated body so as to reach but not cut through the first clad layer from a side where the core layer and the second clad layer are laminated; and embedding at least a cut portion of the laminated body with a third clad layer.
    Type: Application
    Filed: March 11, 2008
    Publication date: November 20, 2008
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Keishi SHIMIZU, Akira Fujii, Toshihiko Suzuki, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20080279504
    Abstract: An optical substrate includes: a submount; a planar optical element which is mounted on the submount; a pair of positioning members which are disposed at an interval across the planar optical element on the submount; an optical waveguide in which a core and a clad are formed by a flexible material; and a holding member which holds the optical waveguide to allow a tip end of the optical waveguide to be inserted between the pair of positioning members, and the optical waveguide to be bent to extend parallel to the submount.
    Type: Application
    Filed: March 6, 2008
    Publication date: November 13, 2008
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi OHTSU, Toshihiko SUZUKI, Akira FUJII, Kazutoshi YATSUDA, Keishi SHIMIZU, Eiichi AKUTSU
  • Patent number: 7438838
    Abstract: The invention relates to a method for producing a polymeric optical waveguide-forming master plate, comprising: laying a thread which does not transmit rays used for subsequent exposure on a substrate for a master plate, applying a positive resist material onto the substrate to have a thickness such that, when parallel rays are vertically radiated onto the resist from a side opposite to a substrate side with respect to the thread and then the resist is developed, a layer made of the resist is formed at whole space where the rays have not been radiated; radiating parallel rays substantially vertically to the substrate to expose the resist to the rays; and developing the exposed resist on the substrate to form a convex portion corresponding to a shape of an optical waveguide core, to waveguide production methods using the same, and to the resultant waveguide.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: October 21, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Publication number: 20080232753
    Abstract: There is provided an optical waveguide including: a waveguide core through which light propagates; a cavity that is present inside the waveguide core so as to be open at least one end in the thickness direction of the waveguide core; a layer-form first cladding having a lower refractive index than the waveguide core, and sealing at least one of the at least one opening of the cavity to thereby close the opening of the cavity; and a second cladding having a lower refractive index than the waveguide core, and surrounding the waveguide core. There is also provided a method of manufacturing the optical waveguide.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 25, 2008
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Akira FUJII, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 7394952
    Abstract: An optical module comprises: a surface-type optical element having at least one of a light emitting face and a light receiving face on the back of a mounting face; an optical waveguide for transmitting light in the direction of a normal line of the mounting face; and a mounting portion having an element positioning portion for positioning the surface-type optical element and an optical waveguide positioning portion for positioning the optical waveguide, the mounting portion being mounted with the surface-type optical element and the optical waveguide.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: July 1, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Osamu Ueno, Shigemi Ohtsu, Keishi Shimizu, Eiichi Akutsu
  • Patent number: 7386213
    Abstract: The present invention provides a bidirectional communication optical waveguide which can adopt a configuration in which light sources having the same wavelengths are used and stray light is not inputted to either a light emitting device or a light receiving device, and the bidirectional communication optical waveguide realizes a bidirectional communication module. The bidirectional communication optical waveguide includes a main waveguide core and a sub-waveguide core. A main inclined plane is provided in a midway of an optical path in the main waveguide core.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: June 10, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu, Akira Fujii, Toshihiko Suzuki
  • Patent number: 7382960
    Abstract: An optical waveguide film that can supply power at extremely low cost, and a light transmission and reception module using this film are provided. A macromolecular optical waveguide film is composed of a square-shaped waveguide core which extends in a film length direction, a conductive wires which extends in the film length direction and is arranged in parallel with the waveguide core, and a cladding which surrounds the waveguide core and the conductive wire. The two conductive wires are provided, and the waveguide core is provided between the two conductive wires.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: June 3, 2008
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu