Patents by Inventor Eiji Haryu

Eiji Haryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220019228
    Abstract: A mobile object control method includes recognizing an object existing around a mobile object and a follower following the mobile object, generating a first trajectory, which is a target trajectory of the follower for the follower to move while avoiding contact with the object without considering the mobile object as an object that the follower is to avoid contact with, based on a result of the recognition, generating a second trajectory, which is a target trajectory of the mobile object, based on the first trajectory, and controlling a mechanism for moving the mobile object so that the mobile object moves along the second trajectory.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 20, 2022
    Inventors: Yuji Yasui, Eiji Haryu
  • Patent number: 10053783
    Abstract: A differential pressure water electrolysis system includes high pressure water electrolysis cells stacked and fastened in a stacking direction. Each of the high pressure water electrolysis cells includes an electrolyte membrane, an anode feed conductor, a cathode feed conductor, an anode separator, a cathode separator, an elastic member, a hydrogen manifold, a conductive member, a sealing member, a conductive sheet, and an insulation member. The conductive member is disposed between the cathode separator and the electrolyte membrane to provide the hydrogen manifold. The conductive sheet is disposed so as to extend from a first portion between the conductive member and the electrolyte membrane to a second portion between the cathode feed conductor and the elastic member. The insulation member is disposed in a center portion of the cathode feed conductor and between the conductive sheet and the electrolyte membrane.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: August 21, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Eiji Haryu, Nobuyuki Kawasaki, Hiroyuki Ishikawa
  • Patent number: 10053784
    Abstract: A differential pressure water electrolysis system includes high-pressure water electrolysis cells and a high pressure hydrogen manifold. The high-pressure water electrolysis cells are stacked in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, an anode current collector, a cathode current collector, a tabular anode separator, a tabular cathode separator, a sealing member, and a resin frame member. The resin frame member is disposed between the tabular anode separator and the tabular cathode separator so as to surround the sealing member and the anode current collector. The resin frame member includes a water supply port to introduce water for electrolysis and a water discharge port to discharge a surplus of the water after electrolysis. The high pressure hydrogen manifold is provided so as to distribute hydrogen in the stacking direction and so as to be encircled by the sealing member.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 21, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hayato Daimon, Eiji Haryu
  • Patent number: 10053786
    Abstract: A differential pressure water electrolysis system includes high-pressure water electrolysis cells, first and second end plates, and a high pressure hydrogen manifold. The high pressure hydrogen manifold is provided to distribute hydrogen in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, an anode current collector, a cathode current collector, an anode separator, a cathode separator, an elastic member, a manifold member, and a cylindrical porous member. The manifold member is disposed between the anode separator and the electrolyte membrane to surround the high pressure hydrogen manifold and includes a seal chamber in which a sealing member is disposed to encircle and seal the high pressure hydrogen manifold. The cylindrical porous member is disposed in the manifold member between the seal chamber and the high pressure hydrogen manifold.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: August 21, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki Ishikawa, Eiji Haryu, Hayato Daimon
  • Publication number: 20170342579
    Abstract: A pressure releasing method in a water electrolysis system including a water electrolyzer, the pressure releasing method includes operating the water electrolyzer to electrolyze water to produce oxygen with a first pressure on an anode side and hydrogen with a second pressure higher than the first pressure on the cathode side. It is determined whether the water electrolyzer is in a frozen environment when the water electrolysis system stops operating. The cathode side is depressurized without suppling a depressurizing current to the water electrolyzer if it is determined that the water electrolyzer is in the frozen environment, or with suppling the depressurizing current to the water electrolyzer if it is determined that the water electrolyzer is not in the frozen environment.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 30, 2017
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hayato DAIMON, Eiji HARYU
  • Patent number: 9828682
    Abstract: A differential pressure water electrolysis apparatus includes high-pressure water electrolysis cells and a pressing mechanism. The high-pressure water electrolysis cells are stacked in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, a member, an anode current collector, a cathode current collector, an anode separator, and a cathode separator. The electrolyte membrane has a first side and a second side opposite to the first side in the stacking direction. The member has a surface which has an opening and which is in contact with the electrolyte membrane. The anode current collector is disposed on the first side of the electrolyte membrane. The cathode current collector is disposed on the second side of the electrolyte membrane. The anode separator has an anode chamber in which the anode current collector is accommodated. The pressing mechanism is to press the high-pressure water electrolysis cells in the stacking direction.
    Type: Grant
    Filed: September 7, 2015
    Date of Patent: November 28, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Nobuyuki Kawasaki, Eiji Haryu, Hiroyuki Ishikawa
  • Patent number: 9365938
    Abstract: A differential pressure water electrolysis apparatus includes a cell unit, a first end plate, a second end plate, and a pressing mechanism. The pressing mechanism is provided between the first end plate and a first end of the cell unit to press the cell unit in a stacking direction and includes a first corrosion-resistant member, a second corrosion-resistant member, a third corrosion-resistant member, and a pressure-resistant member. The first corrosion-resistant member is connected to the first end plate. The second corrosion-resistant member is engaged with the first end of the cell unit and is movable in the stacking direction. The third corrosion-resistant member is connected to the first corrosion-resistant member or the second corrosion-resistant member and covers an outer peripheral part of the first corrosion-resistant member and an outer peripheral part of the second corrosion-resistant member to provide a fluid introduction chamber communicating with a cathode side.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 14, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Eiji Haryu, Koji Nakazawa
  • Publication number: 20160130708
    Abstract: A differential pressure water electrolysis system includes high-pressure water electrolysis cells and a high pressure hydrogen manifold. The high-pressure water electrolysis cells are stacked in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, an anode current collector, a cathode current collector, a tabular anode separator, a tabular cathode separator, a sealing member, and a resin frame member. The resin frame member is disposed between the tabular anode separator and the tabular cathode separator so as to surround the sealing member and the anode current collector. The resin frame member includes a water supply port to introduce water for electrolysis and a water discharge port to discharge a surplus of the water after electrolysis. The high pressure hydrogen manifold is provided so as to distribute hydrogen in the stacking direction and so as to be encircled by the sealing member.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 12, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hayato DAIMON, Eiji HARYU
  • Publication number: 20160122885
    Abstract: A differential pressure water electrolysis system includes high-pressure water electrolysis cells, first and second end plates, and a high pressure hydrogen manifold. The high pressure hydrogen manifold is provided to distribute hydrogen in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, an anode current collector, a cathode current collector, an anode separator, a cathode separator, an elastic member, a manifold member, and a cylindrical porous member. The manifold member is disposed between the anode separator and the electrolyte membrane to surround the high pressure hydrogen manifold and includes a seal chamber in which a sealing member is disposed to encircle and seal the high pressure hydrogen manifold. The cylindrical porous member is disposed in the manifold member between the seal chamber and the high pressure hydrogen manifold.
    Type: Application
    Filed: October 27, 2015
    Publication date: May 5, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hiroyuki ISHIKAWA, Eiji HARYU, Hayato DAIMON
  • Publication number: 20160083854
    Abstract: A differential pressure water electrolysis apparatus includes high-pressure water electrolysis cells and a pressing mechanism. The high-pressure water electrolysis cells are stacked in a stacking direction. Each of the high-pressure water electrolysis cells includes an electrolyte membrane, a member, an anode current collector, a cathode current collector, an anode separator, and a cathode separator. The electrolyte membrane has a first side and a second side opposite to the first side in the stacking direction. The member has a surface which has an opening and which is in contact with the electrolyte membrane. The anode current collector is disposed on the first side of the electrolyte membrane. The cathode current collector is disposed on the second side of the electrolyte membrane. The anode separator has an anode chamber in which the anode current collector is accommodated. The pressing mechanism is to press the high-pressure water electrolysis cells in the stacking direction.
    Type: Application
    Filed: September 7, 2015
    Publication date: March 24, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Nobuyuki KAWASAKI, Eiji HARYU, Hiroyuki ISHIKAWA
  • Publication number: 20160060771
    Abstract: A differential pressure water electrolysis system includes high pressure water electrolysis cells stacked and fastened in a stacking direction. Each of the high pressure water electrolysis cells includes an electrolyte membrane, an anode feed conductor, a cathode feed conductor, an anode separator, a cathode separator, an elastic member, a hydrogen manifold, a conductive member, a sealing member, a conductive sheet, and an insulation member. The conductive member is disposed between the cathode separator and the electrolyte membrane to provide the hydrogen manifold. The conductive sheet is disposed so as to extend from a first portion between the conductive member and the electrolyte membrane to a second portion between the cathode feed conductor and the elastic member. The insulation member is disposed in a center portion of the cathode feed conductor and between the conductive sheet and the electrolyte membrane.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 3, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Eiji HARYU, Nobuyuki KAWASAKI, Hiroyuki ISHIKAWA
  • Patent number: 9194048
    Abstract: In a unit cell that forms a water electrolysis device, which is an electrochemical device, an electrolyte membrane/electrode structure is sandwiched between an anode-side separator and a cathode-side separator. A load-applying mechanism is disposed between a cathode-side feeder and the cathode-side separator, while an anode-side feeder is set with a smaller contact area range than the aforementioned cathode-side feeder. The anode-side feeder and the cathode-side feeder are set with a larger contact area range than an anode electrode catalyst layer and a cathode electrode catalyst layer, and a contact surface that touches a solid polymer electrolyte membrane on the aforementioned anode-side feeder is disposed projecting farther to the side of the aforementioned solid polymer electrolyte membrane than a contact surface on the anode-side separator and a contact surface on a frame member.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: November 24, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Masanori Okabe, Koji Nakazawa, Kenji Taruya
  • Publication number: 20150122637
    Abstract: A differential pressure water electrolysis apparatus includes a cell unit, a first end plate, a second end plate, and a pressing mechanism. The pressing mechanism is provided between the first end plate and a first end of the cell unit to press the cell unit in a stacking direction and includes a first corrosion-resistant member, a second corrosion-resistant member, a third corrosion-resistant member, and a pressure-resistant member. The first corrosion-resistant member is connected to the first end plate. The second corrosion-resistant member is engaged with the first end of the cell unit and is movable in the stacking direction. The third corrosion-resistant member is connected to the first corrosion-resistant member or the second corrosion-resistant member and covers an outer peripheral part of the first corrosion-resistant member and an outer peripheral part of the second corrosion-resistant member to provide a fluid introduction chamber communicating with a cathode side.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 7, 2015
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Eiji HARYU, Koji NAKAZAWA
  • Patent number: 8961748
    Abstract: A water electrolysis system includes a water electrolysis apparatus, a low-pressure gas-liquid separator, a high-pressure gas-liquid separator, water pipe, and a decompression water supply device. The high-pressure gas-liquid separator separates the hydrogen received from a cathode of the water electrolysis apparatus and permeation water that has permeated from the anode. The water pipe connects the high-pressure gas-liquid separator and the low-pressure gas-liquid separator and is used for returning the water from the high-pressure gas-liquid separator to the low-pressure gas-liquid separator. The decompression water supply device is arranged at the water pipe and is to decompress the water discharged from the high-pressure gas-liquid separator.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Koji Nakazawa, Masanori Okabe
  • Patent number: 8894829
    Abstract: A water electrolysis apparatus is formed by stacking a plurality of unit cells. Each unit cell includes a membrane electrode assembly, and an anode separator and a cathode separator which sandwich the membrane electrode assembly therebetween. The anode separator has a plurality of inlet joint channels in fluid communication with a water supply passage, and a plurality of outlet joint channels in fluid communication with a discharge passage. The water supply passage has an inner wall surface at which the inlet joint channels are open, and an outer wall surface which faces the inner wall surface, the inner wall surface and the outer wall surface jointly forming an opening of an oblong cross-sectional shape.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: November 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Masanori Okabe, Koji Nakazawa, Kenji Taruya
  • Patent number: 8815063
    Abstract: A high-pressure water electrolysis apparatus includes a plurality of unit cells each having an anode separator, a cathode separator, and a membrane electrode assembly which is sandwiched between the anode separator and the cathode separator. The membrane electrode assembly includes a solid polymer electrolyte membrane, and an anode current collector and a cathode current collector which are disposed respectively on opposite sides of the solid polymer electrolyte membrane. An electrically-conductive member is interposed between the cathode separator and disc springs and between a plate member and the cathode current collector so as to integrally extend from a region between the cathode separator and the disc springs to a region between the plate member and the cathode current collector. The electrically-conductive member includes an electrically-conductive path which electrically connects the cathode separator with the cathode current collector.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Koji Nakazawa, Masanori Okabe
  • Patent number: 8709220
    Abstract: Each unit cell of a water electrolysis apparatus includes a pair of an anode separator and a cathode separator and a membrane electrode assembly interposed between the pair of separators. The anode separator has a first flow field to which water is supplied, and the cathode separator has a second flow field for producing high-pressure hydrogen through electrolysis of the water. A second seal groove for receiving a second seal member is disposed annularly around the second flow field. A pressure-releasing chamber is disposed outwardly of the second seal groove, is capable of communicating with the second seal groove and communicates with the outside through a depressurizing channel.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 29, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koji Nakazawa, Masanori Okabe, Eiji Haryu, Kenji Taruya, Koichi Takahashi
  • Patent number: 8691060
    Abstract: A water electrolysis apparatus includes an anode separator having a water flow field held in fluid communication with a water supply passage and a discharge passage. The water flow field includes a plurality of water channels, an arcuate inlet buffer, and an arcuate outlet buffer. The water channels have respective ends connected to the arcuate inlet buffer through respective inlet joint channels. The inlet joint channels are oriented at an angle of 90 degrees or greater with respect to respective tangential lines at the ends of the inlet joint channels which are connected to the arcuate inlet buffer.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: April 8, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Eiji Haryu, Koji Nakazawa, Masanori Okabe, Kenji Taruya
  • Publication number: 20130015059
    Abstract: In a unit cell that forms a water electrolysis device, which is an electrochemical device, an electrolyte membrane/electrode structure is sandwiched between an anode-side separator and a cathode-side separator. A load-applying mechanism is disposed between a cathode-side feeder and the cathode-side separator, while an anode-side feeder is set with a smaller contact area range than the aforementioned cathode-side feeder. The anode-side feeder and the cathode-side feeder are set with a larger contact area range than an anode electrode catalyst layer and a cathode electrode catalyst layer, and a contact surface that touches a solid polymer electrolyte membrane on the aforementioned anode-side feeder is disposed projecting farther to the side of the aforementioned solid polymer electrolyte membrane than a contact surface on the anode-side separator and a contact surface on a frame member.
    Type: Application
    Filed: March 17, 2011
    Publication date: January 17, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Eiji Haryu, Masanori Okabe, Koji Nakazawa, Kenji Taruya
  • Patent number: 8337678
    Abstract: A hydrogen electrolysis apparatus includes a stack of unit cells each having a membrane electrode assembly sandwiched between an anode separator and a cathode separator. The anode separator has a first flow field which is supplied with water, and the cathode separator has a second flow field which produces high-pressure hydrogen through an electrolysis of the water. The cathode separator also has a first seal groove defined therein which extends around the second flow field and a first seal member inserted in the first seal groove. The first seal groove and the second flow field are held in fluid communication with each other through passageways. The passageways keep the first seal groove and the second flow field in direct fluid communication with each other in bypassing relation to the boundary between the cathode separator and a solid polymer electrolyte membrane.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 25, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Ishikawa, Masanori Okabe, Koji Nakazawa, Eiji Haryu