Patents by Inventor Eiji Hino

Eiji Hino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10161032
    Abstract: Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: December 25, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kazuto Yagi, Eiji Hino, Yuichiro Shindo
  • Patent number: 9725814
    Abstract: High purity manganese having a purity of 3N (99.9%) or more, wherein number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. A method for producing high purity manganese, wherein refining is performed using a raw material (secondary raw material) obtained by acid-washing a manganese raw material (primary raw material) so that the produced high purity manganese has a purity of 3N (99.9%) or more, and number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. The present invention provides a method for producing high purity metal manganese from commercially available manganese, and aims to obtain high purity metal manganese having a low LPC.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 8, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kazuto Yagi, Yuichiro Shindo, Eiji Hino
  • Patent number: 9666418
    Abstract: A high-purity titanium target for sputtering containing 0.5 to 5 mass ppm of S as an additive component, wherein the purity of the target excluding additive components and gas components is 99.995 mass percent or higher. An object of this invention is to provide a high-quality titanium target for sputtering which is free from fractures and cracks during high-power sputtering (high-rate sputtering) and is capable of stabilizing the sputtering characteristics.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 30, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Nobuhito Makino, Atsushi Fukushima, Kazuto Yagi, Eiji Hino
  • Publication number: 20160289853
    Abstract: Provided is high purity Indium having a purity of 7N (99.99999%) or higher, and containing 0.05 ppm or less of Pb, 0.005 ppm or less of Zn, and 0.02 ppm or less of S. A method of producing high purity In, wherein SrCO3 is added to an electrolyte upon performing electrolytic refining using 5N (99.999%) In to reduce Pb, Zn and S to attain a purity of 7N (99.99999%) or higher. Under circumstances where In demands for LED, such as InGaN and AlInGaP, are anticipated, it is necessary to produce indium in mass quantities and inexpensively, and the present invention provides technology capable of achieving the same.
    Type: Application
    Filed: September 2, 2014
    Publication date: October 6, 2016
    Applicant: JX Nippon Mining & Metals Corporation
    Inventors: Eiji Hino, Hirohumi Obu
  • Publication number: 20150047469
    Abstract: A method for recovering a rare earth element from a rare earth element-containing alloy, wherein a rare earth element is eluted by performing electrolysis in an electrolyte which contains a metal powder of a rare earth element-containing alloy. An object of this invention is to provide a method for extremely easily and efficiently recovering a rare earth element.
    Type: Application
    Filed: July 11, 2013
    Publication date: February 19, 2015
    Inventors: Eiji Hino, Yuichiro Shindo
  • Publication number: 20150021174
    Abstract: Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 22, 2015
    Inventors: Kazuto Yagi, Eiji Hino, Yuichiro Shindo
  • Publication number: 20140356222
    Abstract: High purity manganese having a purity of 3N (99.9%) or more, wherein number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. A method for producing high purity manganese, wherein refining is performed using a raw material (secondary raw material) obtained by acid-washing a manganese raw material (primary raw material) so that the produced high purity manganese has a purity of 3N (99.9%) or more, and number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. The present invention provides a method for producing high purity metal manganese from commercially available manganese, and aims to obtain high purity metal manganese having a low LPC.
    Type: Application
    Filed: July 18, 2012
    Publication date: December 4, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kazuto Yagi, Yuichiro Shindo, Eiji Hino
  • Publication number: 20140251802
    Abstract: A high-purity titanium target for sputtering containing 0.5 to 5 mass ppm of S as an additive component, wherein the purity of the target excluding additive components and gas components is 99.995 mass percent or higher. An object of this invention is to provide a high-quality titanium target for sputtering which is free from fractures and cracks during high-power sputtering (high-rate sputtering) and is capable of stabilizing the sputtering characteristics.
    Type: Application
    Filed: April 27, 2012
    Publication date: September 11, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Nobuhito Makino, Atsushi Fukushima, Kazuto Yagi, Eiji Hino
  • Patent number: 8182594
    Abstract: An electroless nickel plating liquid capable of forming an underbarrier metal for metal bumps or solder bumps by electroless nickel plating with a uniform film thickness on silicon wafers composed of multiple IC chips contains a water-soluble nickel salt, a reducing agent, a complexing agent, and a pH buffer, wherein_lead ion is contained at 0.01-1 ppm, cobalt ion is contained at 0.01-1 ppm, and a sulfur compound is contained at 0.01-1 ppm.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: May 22, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Eiji Hino, Masashi Kumagai
  • Publication number: 20090064892
    Abstract: An object is to provide an electroless nickel plating liquid capable of forming an underbarrier metal for metal bumps or solder bumps by electroless nickel plating with a uniform film thickness on silicon wafers composed of multiple IC chips. An electroless nickel plating liquid comprising a water-soluble nickel salt, a reducing agent, a complexing agent, and a pH buffer, wherein lead ion is contained at 0.01-1 ppm, cobalt ion is contained at 0.01-1 ppm, and a sulfur compound is contained at 0.01-1 ppm.
    Type: Application
    Filed: September 26, 2006
    Publication date: March 12, 2009
    Inventors: Eiji Hino, Masashi Kumagai
  • Patent number: 7300501
    Abstract: The object is to provide an electroless gold plating liquid which has an adequate deposition speed for practical use without containing any thallium or other heavy metal ions, excellent stability of the plating liquid and contains a non-cyanide gold salt as a gold salt, an alkali metal salt or an ammonium salt of sulfurous acid and thiosulfuric acid as a metal complexing agent, a hydroxyalkylsulfonic acid or a salt thereof represented by the following general formula as a reducing agent, and an amine compound, wherein R represents hydrogen, a carboxyl group, or any of a phenyl group, a tolyl group, a naphthyl group, a saturated or unsaturated alkyl group, an acetyl group, an acetonyl group, a pyridyl group and a furyl group which may have a substitutional group, X represents any of hydrogen, Na, K, and NH4, and n is an integer between 0 and 4.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: November 27, 2007
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Eiji Hino, Masashi Kumagai
  • Publication number: 20070095249
    Abstract: The object is to provide an electroless plating liquid which has an adequate deposition speed for practical use without containing any thallium or other heavy metal ions, and which has excellent stability of the plating liquid. An electroless gold plating liquid comprising a non-cyanide gold salt as a gold salt, an alkali metal salt or an ammonium salt of sulfurous acid and thiosulfuric acid as a metal complexing agent, a hydroxyalkylsulfonic acid or a salt thereof represented by the following general formula as a reducing agent, and an amine compound. (wherein R represents hydrogen, a carboxyl group, or any of a phenyl group, a tolyl group, a naphthyl group, a saturated or unsaturated alkyl group, an acetyl group, an acetonyl group, a pyridyl group and a furyl group which may have a substitutional group, X represents any of hydrogen, Na, K, and NH4, and n is an integer between 0 and 4.
    Type: Application
    Filed: March 29, 2005
    Publication date: May 3, 2007
    Inventors: Eiji Hino, Masashi Kumagai
  • Patent number: 5456817
    Abstract: There is disclosed a treating process whereby the thermal oxidation resistance on the shiny side of a copper foil is enhanced so that the shiny side will not discolor on heating to higher temperatures than usual, without impairing the foil's solder wettability, adhesion to resist, and other properties. A Zn-Ni alloy layer which comprises 50-97 wt % Zn and 3-50 wt % Ni or a Zn-Co alloy layer which comprises 50-97 wt % Zn and 3-50 wt % Co is formed on the shiny side of a copper foil at a deposition quantity of 100-500 .mu.g/dm.sup.2 and then the alloy surface is treated for Cr-base corrosion-preventive coating. The Cr-base corrosion-preventive treatment comprises (1) a treatment for forming a coating film of chromium oxide alone, (2) a treatment for forming a mixed coating film of chromium oxide and zinc and/or zinc oxide or (1)+(2). The roughened side of the copper foil may be treated to form thereon a layer of single metal or alloy of two or more metals chosen from among Cu, Cr, Ni, Fe, Co, and Zn.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: October 10, 1995
    Assignee: Nikko Gould Foil Co., Ltd.
    Inventors: Eiji Hino, Keisuke Yamanishi, Kazuhiko Sakaguchi
  • Patent number: 5019222
    Abstract: A process for the treatment of a copper foil for printed circuits comprises forming, over the surface of the copper foil to be treated, of an electroplating alloy deposit selected from the group consisting of electroplating deposits of binary alloys composed of 20-40 mg/dm.sup.2 copper and 100-3000 .mu.g/dm.sup.2 cobalt and of ternary alloys of 20-40 mg/dm.sup.2 copper, 100-3000 .mu.g/dm.sup.2 cobalt, and 100-1000 .mu.g/dm.sup.2 nickel. The copper foil treated has heat resistance, peel strength, and resistance to hydrochloric acid comparable to the Cu-Ni-treated foils. It can be etched with a CuCl.sub.2 etchant to form 150 .mu.m or finer-pitch printed circuits and is also etchable with alkalies. Its magnetizability is below the permissible upper limit.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: May 28, 1991
    Assignee: Nikko Gould Foil Co., Ltd.
    Inventors: Eiji Hino, Keisuke Yamanishi