Patents by Inventor Eiji Kambara

Eiji Kambara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240043277
    Abstract: The present invention provides a fullerene production device that enables improving fullerene yields. The fullerene production device includes: a reacting furnace (2) in which fullerenes are generated through incomplete combustion of a raw material gas containing a hydrocarbon; a first injection unit (23c) configured to incompletely combust the raw material gas while injecting the raw material gas into the reacting furnace (2) to form a first combustion flame; and a second injection unit (25a) configured to combust an auxiliary gas containing a hydrocarbon that is the same as or different from that in the raw material gas while injecting the auxiliary gas into the reacting furnace (2) to form a second combustion flame.
    Type: Application
    Filed: November 9, 2021
    Publication date: February 8, 2024
    Applicant: Resonac Corporation
    Inventors: Tadashi IINO, Eiji KAMBARA
  • Patent number: 8992879
    Abstract: A method of producing carbon fibers, in which the producing method comprises allowing a supported type catalyst and a carbon atom-containing compound to come in contact with each other in a heating zone, wherein the supported type catalyst is prepared by a method comprising impregnation of a powdery carrier with colloid containing catalyst to support particles of the catalyst on the powdery carrier having a specifically developed crystal plane such as a powdery carrier being 4 or more in the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction, or a powdery carrier having the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction of 1.5 times or more the ratio (I1s/I2s) of the intensity I1s of the strongest peak to the intensity I2s of the second strongest peak described in JCPDS.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 31, 2015
    Assignee: Showa Denko K.K.
    Inventors: Daisuke Miyamoto, Eiji Kambara
  • Patent number: 8696943
    Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: April 15, 2014
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20130266807
    Abstract: A method of manufacturing carbon fibers, the method comprising the steps of: obtaining a supported catalyst by allowing a main catalyst element such as Fe, Co and Ni and a co-catalyst element such as Ti, V, Cr, W and Mo to be supported by a particulate carrier such as calcium carbonate, calcium hydroxide and calcium oxide; synthesizing fibrous carbons by contacting the supported catalyst with a carbon atom-containing material at synthesis reaction temperature; and then heat treating the resulting fibrous carbons at a temperature of 2000° C. or higher, wherein the particulate carrier comprising a substance which undergoes pyrolysis near the synthetic reaction temperature.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 10, 2013
    Applicant: SHOWA DENKO K.K.
    Inventor: Eiji Kambara
  • Patent number: 8404208
    Abstract: A method for producing a carbon fiber, comprising a step of dissolving or dispersing [I] a compound containing Co element; [II] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [III] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or a fluid dispersion, a step of impregnating a particulate carrier with the solution or the fluid dispersion to prepare a catalyst, and a step of bringing a carbon source into contact with the catalyst in a vapor phase.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: March 26, 2013
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20120321543
    Abstract: A method of producing carbon fibers, in which the producing method comprises allowing a supported type catalyst and a carbon atom-containing compound to come in contact with each other in a heating zone, wherein the supported type catalyst is prepared by a method comprising impregnation of a powdery carrier with colloid containing catalyst to support particles of the catalyst on the powdery carrier having a specifically developed crystal plane such as a powdery carrier being 4 or more in the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction, or a powdery carrier having the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction of 1.5 times or more the ratio (I1s/I2s) of the intensity I1s of the strongest peak to the intensity I2s of the second strongest peak described in JCPDS.
    Type: Application
    Filed: March 2, 2011
    Publication date: December 20, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Daisuke Miyamoto, Eiji Kambara
  • Patent number: 8308990
    Abstract: The invention relates to a carbon nanofiber containing at least iron (Fe) and vanadium (V), wherein the iron (Fe) is present in an amount of 6 mass % or less and the vanadium (V) is present in an amount of 3 mass % or less as a metal element other than carbon, wherein a graphite plane is inclined to the fiber axis.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 13, 2012
    Assignee: Showa Denko K.K.
    Inventors: Gaku Oriji, Eiji Kambara
  • Publication number: 20110218288
    Abstract: A method of producing a carbon fiber aggregate, including bringing a supported catalyst into contact with a carbon-containing compound in a heated zone, the supported catalyst being prepared by heat-treating aluminum hydroxide which has a BET specific surface area of 1 m2/g or less and a cumulative 50% volume particle diameter of 10 to 300 ?m until the BET specific surface area reaches to 50 to 200 m2/g, thereby yielding a support, and then supporting a metal catalyst or a catalytic metal precursor on the support. Also provided is a carbon fiber aggregate produced by the method, a resin composite material including the carbon fiber aggregate, and a catalyst for producing the carbon fiber aggregate.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Applicant: SHOWA DENKO K.K.
    Inventor: Eiji Kambara
  • Publication number: 20110101265
    Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20110105685
    Abstract: A method for producing a carbon fiber, comprising a step of dissolving or dispersing [I] a compound containing Co element; [II] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [III] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or a fluid dispersion, a step of impregnating a particulate carrier with the solution or the fluid dispersion to prepare a catalyst, and a step of bringing a carbon source into contact with the catalyst in a vapor phase.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: Showa Denko K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20110104490
    Abstract: A catalyst for production of a carbon fiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or a fluid dispersion, and then by impregnating a particulate carrier with the solution or the fluid dispersion. By means of a step of bringing a carbon source into contact with the catalyst in a vapor phase, the carbon fiber is obtained which is tubular and in which a graphite layer is approximately parallel with the carbon fiber axis, and a shell is in a multi-walled structure.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20110089365
    Abstract: The invention relates to a carbon nanofiber containing at least iron (Fe) and vanadium (V), wherein the iron (Fe) is present in an amount of 6 mass % or less and the vanadium (V) is present in an amount of 3 mass % or less as a metal element other than carbon, wherein a graphite plane is inclined to the fiber axis.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Applicant: Showa Denko K.K.
    Inventors: Gaku ORIJI, Eiji KAMBARA
  • Patent number: 7879261
    Abstract: The invention relates to (1) carbon nanofiber containing iron (Fe) of 6 mass % or less and vanadium (V) of 3 mass % or less as a metal impurity other than carbon, which does not substantially contain metal elements other than Fe and V, (2) a method for producing carbon nanofiber characterized in contacting a catalyst in which Fe and V are supported on a carbon support and a carbon-containing compound at a high temperature, (3) a resin composite material in which the carbon nanofiber is blended and (4) use thereof. According to the invention, an inexpensive carbon fiber filler material can be obtained which has a low content of metal impurities and enables to exhibit electric conductivity when added to resin in a small amount.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 1, 2011
    Assignee: Showa Denko K.K.
    Inventors: Gaku Oriji, Eiji Kambara
  • Patent number: 7846415
    Abstract: The invention provides a method of producing vapor grown carbon fiber by vapor-phase reaction conducted by supplying carbon source compounds and a catalyst or a catalyst precursor into a heating zone, wherein at least one of the carbon source compound and the catalyst or the catalyst precursor is solid at room temperature and the solid compound is supplied in gas form into the heating zone from a material supplier filled with the solid material alone at a constant amount. The production method according to the invention enables efficient and stable production of vapor phase carbon fiber even by using a high-volume production equipment.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: December 7, 2010
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Tomoaki Yoshida, Toshio Morita
  • Publication number: 20100261062
    Abstract: An electrode comprising a crimped carbon fiber having a multilayer structure comprising a hollow structure in the inside, with the inner layer part having a carbon structure containing a herringbone structure and the outer layer part having a carbon structure differing from the carbon structure of the inner part.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: Showa Denko K.K.
    Inventors: Eiji KAMBARA, Katsuyuki Tsuji
  • Patent number: 7771694
    Abstract: A crimped carbon fiber having a multilayer structure comprising a hollow structure in the inside, with the inner layer part having a carbon structure containing a herringbone structure and the outer layer part having a carbon structure differing from the carbon structure of the inner layer part. A method for producing a crimped carbon fiber, comprising contacting a carbon source and/or a catalyst source with a sulfur source in a heating zone to produce a vapor grown carbon fiber, wherein the ratio of the molar number of sulfur atom in the sulfur source to the molar number of the catalyst metal atom is 2.0 or more.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: August 10, 2010
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Katsuyuki Tsuji
  • Patent number: 7704481
    Abstract: A method for producing vapor-grown carbon fibers, comprising contacting a carbon compound with a catalyst and/or a catalyst precursor compound in a heating zone, wherein the carbon compound is a combination of compounds respectively selected from carbon compounds having no benzene ring structure within molecule [Group (a)] and from aromatic compounds [Group (b)], these compounds satisfy the conditions that, in the raw materials, (number of atoms of element as catalyst)/(number of all carbon atoms) & equals; 0.000005 to 0.0015 and [number of carbon atoms contained in compound of Group (a)]/[number of carbon atoms contained in compound of Group (a)+number of carbon atoms contained in compound of Group (b)] & equals; 0.001 to 0.9, and the residence time in the temperature region of 600° C. or more is 30 seconds or less.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: April 27, 2010
    Assignee: Showa Denko K.K.
    Inventors: Tomoyoshi Higashi, Eiji Kambara, Katsuyuki Tsuji
  • Publication number: 20090176100
    Abstract: The present invention provides a process for producing a vapor-grown carbon fiber by supplying a raw material at least containing a carbon source and a catalyst and/or catalyst precursor compound into a heating zone, wherein the raw material further containing an oxygen-containing carbon source compound which is selected from the group consisting of ketones and ethers. The process for producing a vapor-grown carbon fiber according to the present invention does not leave a residue in a reaction device because a raw material used contains a particular oxygen-containing carbon source compound and, thereby, can continuously produce a vapor-grown carbon fiber.
    Type: Application
    Filed: March 14, 2006
    Publication date: July 9, 2009
    Applicant: SHOWA DENKO K.K.
    Inventors: Tomoyoshi Higashi, Eiji Kambara, Katsuyuki Tsuji, Takanori Aoki
  • Publication number: 20090008611
    Abstract: [Problems to be Solved] The invention provides inexpensive carbon fiber filler material, which has a low content of metal impurity and enables the resin composite material to exhibit conductivity when added thereto in a small amount. [Means to Solve the Problem] (1) carbon nanofiber containing iron (Fe) of 6 mass % or less and vanadium (V) of 3 mass % or less as a metal impurity other than carbon, which does not substantially contain metal elements other than Fe and V, (2) a method for producing carbon nanofiber characterized in contacting a catalyst in which Fe and V are supported on a carbon support and a carbon-containing compound at a high temperature, (3) a resin composite material in which the carbon nanofiber is blended and (4) use thereof.
    Type: Application
    Filed: May 30, 2008
    Publication date: January 8, 2009
    Applicant: SHOWA DENKO K.K.
    Inventors: Gaku ORIJI, Eiji Kambara
  • Patent number: 7390475
    Abstract: A process for continuously producing carbon fibers in a vapor phase by causing a carbon compound to contact a catalyst and/or a catalyst precursor compound in a heating zone. In this process, the carbon compound, the catalyst precursor compound and an additional component are supplied to the heating zone, and these components are subjected to a reaction under a reaction condition such that at least a portion of the additional component is present as a solid or liquid in the heating zone.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: June 24, 2008
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Tomoyoshi Higashi, Katsuyuki Tsuji