Patents by Inventor Eiji Nishioka

Eiji Nishioka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598962
    Abstract: A turbine rotor includes a high- and low-temperature side rotor base materials. The high- and low-temperature materials include concavities and grooves. The turbine rotor has an enclosed space formed by the concavity of the high- and low-temperature materials being disposed opposingly, and a gap formed by the grooves of the high- and low-temperature materials being disposed opposingly. The turbine rotor contains a buildup welding section formed between the high- and low-temperature materials, which has the same composition as that of the high- or low-temperature material, and has a penetration bead on the enclosed space side, and the gap contains a weld metal filled therein. Thus, a stable penetration bead can be formed in a dissimilar material welded rotor combining two kinds of alloy materials with different thermal properties, and then generation of a non-welded portion of a butting section that becomes a start point of fracture can be suppressed.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: March 21, 2017
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Eiji Nishioka, Kenichi Murata, Kazuhiko Endo, Jun Sato, Toshio Namatame, Shinya Imano
  • Patent number: 9591789
    Abstract: An insulation film that strongly adheres to a power semiconductor module having a resin sealer and a conductor plate and has high thermal conductivity is provided. An insulation layer 700 is provided between a power semiconductor module 302 and a heat dissipation portion 307B. The power semiconductor module 302 includes a resin sealer 348, which covers a circumferential side surface of a conductor plate 315, and a plurality of recesses 348D are provided in the resin sealer 348. The insulation layer 700 is formed of a spray coated film 710, an insulation film 720, and a resin layer 730, and the spray coated film 710 is formed on the surface of the resin sealer 348 including recesses 348D to form a seamless flat surface. The planar size of each of the recesses 348D is greater than the planar size of each flat portion 711, which forms the spray coated film 710.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 7, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Eiichi Ide, Eiji Nishioka, Toshiaki Ishii, Junpei Kusukawa, Kinya Nakatsu, Nobutake Tsuyuno, Toshiya Satoh, Masahiko Asano
  • Patent number: 9439332
    Abstract: A power module includes a sealed body in which a semiconductor chip-mounted conductor plate is sealed by a resin in such a manner that a heat dissipating surface of the conductor plate is exposed, a heat dissipating member that is arranged to face the heat dissipating surface, and an insulation layer that is arranged between the sealed body and the heat dissipating member. The insulation layer has a laminated body that is made by laminating an impregnation resin-impregnated ceramic thermal spray film and a bonding resin layer in which a filler having good thermal conductivity is mixed, and that is provided to be in contact with the heat dissipating member and at least the entirety of the heat dissipating surface, and a stress relief resin portion that is provided in a gap between the heat dissipating member and the sealed body to cover an entire circumferential end portion of the laminated body.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: September 6, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Eiichi Ide, Eiji Nishioka, Toshiaki Ishii, Junpei Kusukawa, Kinya Nakatsu, Tokihito Suwa
  • Publication number: 20150003019
    Abstract: An insulation film that strongly adheres to a power semiconductor module having a resin sealer and a conductor plate and has high thermal conductivity is provided. An insulation layer 700 is provided between a power semiconductor module 302 and a heat dissipation portion 307B. The power semiconductor module 302 includes a resin sealer 348, which covers a circumferential side surface of a conductor plate 315, and a plurality of recesses 348D are provided in the resin sealer 348. The insulation layer 700 is formed of a spray coated film 710, an insulation film 720, and a resin layer 730, and the spray coated film 710 is formed on the surface of the resin sealer 348 including recesses 348D to form a seamless flat surface. The planar size of each of the recesses 348D is greater than the planar size of each flat portion 711, which forms the spray coated film 710.
    Type: Application
    Filed: November 9, 2012
    Publication date: January 1, 2015
    Inventors: Eiichi Ide, Eiji Nishioka, Toshiaki Ishii, Junpei Kusukawa, Kinya Nakatsu, Nobutake Tsuyuno, Toshiya Satoh, Masahiko Asano
  • Publication number: 20140168901
    Abstract: A power module includes a sealed body in which a semiconductor chip-mounted conductor plate is sealed by a resin in such a manner that a heat dissipating surface of the conductor plate is exposed, a heat dissipating member that is arranged to face the heat dissipating surface, and an insulation layer that is arranged between the sealed body and the heat dissipating member. The insulation layer has a laminated body that is made by laminating an impregnation resin-impregnated ceramic thermal spray film and a bonding resin layer in which a filler having good thermal conductivity is mixed, and that is provided to be in contact with the heat dissipating member and at least the entirety of the heat dissipating surface, and a stress relief resin portion that is provided in a gap between the heat dissipating member and the sealed body to cover an entire circumferential end portion of the laminated body.
    Type: Application
    Filed: August 9, 2012
    Publication date: June 19, 2014
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Eiichi Ide, Eiji Nishioka, Toshiaki Ishii, Junpei Kusukawa, Kinya Nakatsu, Tokihito Suwa
  • Publication number: 20130343899
    Abstract: A turbine rotor includes a high- and low-temperature side rotor base materials. The high- and low-temperature materials include concavities and grooves. The turbine rotor has an enclosed space formed by the concavity of the high- and low-temperature materials being disposed opposingly, and a gap formed by the grooves of the high- and low-temperature materials being disposed opposingly. The turbine rotor contains a buildup welding section formed between the high- and low-temperature materials, which has the same composition as that of the high- or low-temperature material, and has a penetration bead on the enclosed space side, and the gap contains a weld metal filled therein. Thus, a stable penetration bead can be formed in a dissimilar material welded rotor combining two kinds of alloy materials with different thermal properties, and then generation of a non-welded portion of a butting section that becomes a start point of fracture can be suppressed.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Inventors: Eiji Nishioka, Kenichi Murata, Kazuhiko Endo, Jun Sato, Toshio Namatame, Shinya Imano
  • Patent number: 8596982
    Abstract: A turbine rotor which is easy to manufacture and has a high tolerable temperature is provided. A highly efficient steam turbine power plant is also provided. The turbine rotor is configured from a rotor shaft, an inner rotor disc constructed integrally with the rotor shaft, and an outer rotor disc which is welded to the inner rotor disc via a weld metal part and has a structure for fixing a turbine blade. The outer rotor disc preferably has a cooling hole which extends in an axial direction to penetrate the outer rotor disc over the thickness of the outer rotor disc.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Eiji Nishioka, Masahiko Arai, Hiroyuki Doi
  • Publication number: 20120301309
    Abstract: Dissimilar metal welds including a buttering portion with a small variation in strength distribution in a plate thickness direction are formed by welding two parent materials having at least one of different compositions and different refining conditions through a buttering for alleviating mismatch between one of the different compositions and the different refining conditions of the two members and through a welded metal for joining one of the parent materials and the buttering. The buttering is formed of welding metals laminated in a plate thickness direction, and a dilution ratio of the buttering with the parent materials is 50% or less. The manufacturing method includes performing butt welding on a dummy material formed by increasing a groove depth by providing a member on a bottom side of a welding groove and on parent materials by using the buttering; and processing a groove within a welding metal formed of the buttering.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Inventors: Eiji NISHIOKA, Jun SATO, Shinya IMANO, Takeshi KUDO, Kenichi MURATA, Kazutaka HOSOKAWA, Kazuhiko ENDO
  • Publication number: 20100329849
    Abstract: A turbine rotor which is easy to manufacture and has a high tolerable temperature is provided. A highly efficient steam turbine power plant is also provided. The turbine rotor is configured from a rotor shaft, an inner rotor disc constructed integrally with the rotor shaft, and an outer rotor disc which is welded to the inner rotor disc via a weld metal part and has a structure for fixing a turbine blade. The outer rotor disc preferably has a cooling hole which extends in an axial direction to penetrate the outer rotor disc over the thickness of the outer rotor disc.
    Type: Application
    Filed: June 23, 2010
    Publication date: December 30, 2010
    Inventors: Eiji NISHIOKA, Masahiko Arai, Hiroyuki Doi
  • Publication number: 20100028155
    Abstract: An object of the present invention is to provide a turbine rotor with high reliability of strength. The turbine rotor includes two rotors which are connected at the butted portions of the rotors via a weld without forming penetration beads. Specifically, the turbine rotor includes a rotor for low pressure, a rotor for high pressure, and a center hole formed at a center portion of the turbine rotor. The rotors for low pressure and for high pressure are integrated together into a steam turbine rotor by welding respective ends of the rotors to each other. The respective ends of the rotors are in contact with each other via at least two contact faces in a radial direction and an axial direction of the turbine rotor. At least parts of the respective ends are welded together.
    Type: Application
    Filed: July 27, 2009
    Publication date: February 4, 2010
    Inventors: Eiji Nishioka, Masahiko Arai, Ryusuke Hiruta, Hiroyuki Doi