Patents by Inventor Eik Herbsleb

Eik Herbsleb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10968890
    Abstract: A method and associated control arrangement are disclosed for controlling a power output of a wind power plant (WPP) according to a predetermined power ramp rate limit, the WPP comprising a plurality of wind turbine generators (WTGs). The method comprises receiving a first signal indicating that a first WTG is in a ready state to begin producing power. The method further comprises, upon determining that, responsive to the received first signal, beginning power production of the first WTG at a predetermined default power ramp rate would cause the power output of the WPP to exceed the power ramp rate limit, controlling power production of the first WTG using at least one of: a first delay, a power ramp rate reference less than the default power ramp rate, and a power reference less than a nominal power output of the first WTG.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: April 6, 2021
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Mu Wei, Martin Ansbjerg Kjær, Kouroush Nayebi, Jesper Sandberg Thomsen, Eik Herbsleb
  • Patent number: 10934996
    Abstract: A method, control arrangement, and wind power plant (WPP) comprising a plurality of wind turbine generators (WTGs) are disclosed. The method includes operating, responsive to a received power demand corresponding to the WPP, a boost group of one or more WTGs of the plurality of WTGs to begin producing a boosted power output, wherein the boosted power output of each of the one or more WTGs of the boost group is regulated independent of the power demand. The method further includes determining, based on a measured amount of boosted power production, power production set points for a regulation group of one or more different WTGs of the plurality of WTGs to thereby meet the power demand.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 2, 2021
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Martin Ansbjerg Kjær, Jorge Martinez Garcia, Eik Herbsleb
  • Patent number: 10669990
    Abstract: The invention relates to a control system for a wind turbine. The wind turbine comprises a power generator configured to generate power dependent on a power reference and a pitch system configured to adjust the pitch of a blade of the wind turbine dependent on a pitch request. The control system comprises a controller configured to determine the pitch request dependent on an adjustable gain. A gain scheduler comprised by the control system is configured to set the adjustable gain to an increased gain value if a rate of change of the power reference, e.g. an external power reference, exceeds a threshold.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 2, 2020
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Martin Ansbjerg Kjær, Jesper Sandberg Thomsen, Jacob Krogh Kristoffersen, Jacob Deleuran Grunnet, Eik Herbsleb
  • Patent number: 10465659
    Abstract: The present disclosure relates to a control system for a wind turbine comprising more controllers and where at least some of the controllers operate at different sample frequencies. The control system comprises at least two controller units, a first controller (10) for determining an operational value (OV) of a sub-system and a second controller (20) for the sub-system. The second controller operates at a higher sample frequency than the first controller. It is disclosed that a faster reaction to a received demand value (V1), received for controlling the sub-system, can be obtained by setting the operational value (OV) of the sub-system as the sum of an internal operational value (V5) and a difference value (V4).
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: November 5, 2019
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Keld Hammerum, Martin Ansbjerg Kjær, Jesper Sandberg Thomsen, Eik Herbsleb, Tobias Gybel Hovgaard
  • Patent number: 10451038
    Abstract: The present invention relates to a method for controlling a wind turbine, the wind turbine comprises a rotor connected to a generator, and a rotational speed controller configured to control a speed of the rotor in response to a generator speed reference, and a power controller to control an electric power production, the method comprises the step for receiving a boost command to request a power boost event, so to increase the electrical power production, and imposing a dead band with a dead zone value limit to the rotational speed controller, and wherein the dead band imposes a zero signal to be send to the rotational speed controller, when a speed error is within the dead zone value limit and wherein the dead band imposes an error signal to be send to the rotational speed controller, when a speed error is greater than the dead zone value limit, the error signal being a function of the speed error and the dead zone value limit.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: October 22, 2019
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Martin Ansbjerg Kjær, Eik Herbsleb, Jan Vestergaard Knudsen, Jesper Sandberg Thomsen
  • Patent number: 10359026
    Abstract: A method and associated control arrangement are disclosed for controlling a de-rated power output of a wind turbine generator, where the wind turbine generator is associated with a predetermined power ramp rate upper limit and operating with a de-rated rotor speed. The method includes ramping the power output from an initial power level to a target power level during a ramping interval. During a first portion of the ramping interval, the power output is ramped at a first power ramp rate less than the power ramp rate upper limit. The method further includes ramping the rotor speed to a predetermined rotor speed value contemporaneously with ramping the power output during the first portion of the ramping interval. The first power ramp rate is determined such that a difference between the power output and the target power level is monotonically decreasing during the entirety of the ramping interval.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: July 23, 2019
    Assignee: Vestas Wind Systems A/S
    Inventors: Martin Ansbjerg Kjær, Eik Herbsleb, Martin Møller Sørensen, Jesper Sandberg Thomsen
  • Patent number: 10302067
    Abstract: The invention relates to a controller configured to determine one or more future values of blade control references and/or a generator control references for a wind turbine generator. The first of the future values of the control references are used for control purposes. The future control references are determined from a physical model of a system of the wind turbine generator by solving an optimization problem which includes at least one cost function and at least one constraint.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: May 28, 2019
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Eik Herbsleb, Fabiano Daher Adegas, Poul Brandt Christensen, Robert Bowyer, Fabio Caponetti, Ian Couchman, Lars Finn Sloth Larsen
  • Publication number: 20190055924
    Abstract: A method and associated control arrangement are disclosed for controlling a de-rated power output of a wind turbine generator, where the wind turbine generator is associated with a predetermined power ramp rate upper limit and operating with a de-rated rotor speed. The method includes ramping the power output from an initial power level to a target power level during a ramping interval. During a first portion of the ramping interval, the power output is ramped at a first power ramp rate less than the power ramp rate upper limit. The method further includes ramping the rotor speed to a predetermined rotor speed value contemporaneously with ramping the power output during the first portion of the ramping interval. The first power ramp rate is determined such that a difference between the power output and the target power level is monotonically decreasing during the entirety of the ramping interval.
    Type: Application
    Filed: September 20, 2016
    Publication date: February 21, 2019
    Applicant: Vestas Wind Systems A/S
    Inventors: Martin Ansbjerg Kjær, Eik Herbsleb, Martin Møller Sørensen, Jesper Sandberg Thomsen
  • Publication number: 20190048852
    Abstract: A method, control arrangement, and wind power plant (WPP) comprising a plurality of wind turbine generators (WTGs) are disclosed. The method includes operating, responsive to a received power demand corresponding to the WPP, a boost group of one or more WTGs of the plurality of WTGs to begin producing a boosted power output, wherein the boosted power output of each of the one or more WTGs of the boost group is regulated independent of the power demand. The method further includes determining, based on a measured amount of boosted power production, power production set points for a regulation group of one or more different WTGs of the plurality of WTGs to thereby meet the power demand.
    Type: Application
    Filed: September 8, 2016
    Publication date: February 14, 2019
    Inventors: Martin Ansbjerg KJÆR, Jorge Martinez GARCIA, Eik HERBSLEB
  • Publication number: 20180355848
    Abstract: A method and associated control arrangement are disclosed for controlling a power output of a wind power plant (WPP) according to a predetermined power ramp rate limit, the WPP comprising a plurality of wind turbine generators (WTGs). The method comprises receiving a first signal indicating that a first WTG is in a ready state to begin producing power. The method further comprises, upon determining that, responsive to the received first signal, beginning power production of the first WTG at a predetermined default power ramp rate would cause the power output of the WPP to exceed the power ramp rate limit, controlling power production of the first WTG using at least one of: a first delay, a power ramp rate reference less than the default power ramp rate, and a power reference less than a nominal power output of the first WTG.
    Type: Application
    Filed: November 25, 2016
    Publication date: December 13, 2018
    Inventors: Mu WEI, Martin Ansbjerg KJÆR, Kouroush NAYEBI, Jesper Sandberg THOMSEN, Eik HERBSLEB
  • Publication number: 20180283354
    Abstract: The present disclosure relates to a control system for a wind turbine comprising more controllers and where at least some of the controllers operate at different sample frequencies. The control system comprises at least two controller units, a first controller (10) for determining an operational value (OV) of a sub-system and a second controller (20) for the sub-system. The second controller operates at a higher sample frequency than the first controller. It is disclosed that a faster reaction to a received demand value (V1), received for controlling the sub-system, can be obtained by setting the operational value (OV) of the sub-system as the sum of an internal operational value (V5) and a difference value (V4).
    Type: Application
    Filed: September 27, 2016
    Publication date: October 4, 2018
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Keld HAMMERUM, Martin Ansbjerg KJÆR, Jesper Sandberg THOMSEN, Eik HERBSLEB, Tobias Gybel HOVGAARD
  • Publication number: 20180171977
    Abstract: The present invention relates to a method for controlling a wind turbine, the wind turbine comprises a rotor connected to a generator, and a rotational speed controller configured to control a speed of the rotor in response to a generator speed reference, and a power controller to control an electric power production, the method comprises the step for receiving a boost command to request a power boost event, so to increase the electrical power production, and imposing a dead band with a dead zone value limit to the rotational speed controller, and wherein the dead band imposes a zero signal to be send to the rotational speed controller, when a speed error is within the dead zone value limit and wherein the dead band imposes an error signal to be send to the rotational speed controller, when a speed error is greater than the dead zone value limit, the error signal being a function of the speed error and the dead zone value limit.
    Type: Application
    Filed: June 22, 2016
    Publication date: June 21, 2018
    Inventors: Martin Ansbjerg KJÆR, Eik HERBSLEB, Jan Vestergaard KNUDSEN, Jesper Sandberg THOMSEN
  • Publication number: 20180156196
    Abstract: The invention relates to a control system for a wind turbine. The wind turbine comprises a power generator configured to generate power dependent on a power reference and a pitch system configured to adjust the pitch of a blade of the wind turbine dependent on a pitch request. The control system comprises a controller configured to determine the pitch request dependent on an adjustable gain. A gain scheduler comprised by the control system is configured to set the adjustable gain to an increased gain value if a rate of change of the power reference, e.g. an external power reference, exceeds a threshold.
    Type: Application
    Filed: June 9, 2016
    Publication date: June 7, 2018
    Inventors: Martin Ansbjerg KJÆR, Jesper Sandberg THOMSEN, Jacob Krogh KRISTOFFERSEN, Jacob Deleuran GRUNNET, Eik HERBSLEB
  • Patent number: 9709034
    Abstract: Methods, controllers and computer program products for controlling a wind turbine. Under de-rated operating conditions in which the power requested from a wind turbine is less than the available power, a controller adjusts blade pitch of the wind turbine to reduce the rotor power coefficient. The captured wind power is thereby reduced to be approximately equal to the requested electrical power, which is less than either the available power or the rated power of the wind turbine generator. This reduction in captured power provides the controller with an additional degree of freedom that allows the controller to increase the electrical power output of the wind turbine in response to wind fluctuations without damaging the wind turbine. By allowing increases in power under de-rated conditions, the controller may reduce the amount of pitching necessary to prevent the turbine from exceeding its rated power output level.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: July 18, 2017
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Martin Ansbjerg Kjær, Eik Herbsleb
  • Patent number: 9593669
    Abstract: A hydraulic transmission for a wind turbine that includes a rotor, one or more blades mounted to the rotor, a hydraulic pump mechanically connected to the rotor, and a hydraulic motor. The hydraulic pump and the hydraulic motor are connected to one another by a high pressure circuit. The hydraulic pump maybe a variable displacement hydraulic pump and the hydraulic motor may include a variable displacement hydraulic motor. The wind turbine, including the rotor, the blades of the rotor, the hydraulic pump, and the hydraulic motor may be controlled according to different approaches.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 14, 2017
    Assignee: VESTAS WIND SYSTEMS A/S
    Inventors: Per Nielsen Lindholdt, Eik Herbsleb, Allan Holm Jørgensen, Christian Mark Nielsen, Hans Henrik Højsgaard, Peter Koldkjær, Kristian Gregerssen
  • Publication number: 20150369214
    Abstract: The invention relates to a controller configured to determine one or more future values of blade control references and/or a generator control references for a wind turbine generator. The first of the future values of the control references are used for control purposes. The future control references are determined from a physical model of a system of the wind turbine generator by solving an optimization problem which includes at least one cost function and at least one constraint.
    Type: Application
    Filed: February 4, 2014
    Publication date: December 24, 2015
    Inventors: Eik HERBSLEB, Fabiano DAHER ADEGAS, Poul Brandt CHRISTENSEN, Robert BOWYER, Fabio CAPONETTI, Ian COUCHMAN, Lars Finn SLOTH LARSEN
  • Publication number: 20150267686
    Abstract: Methods, controllers and computer program products for controlling a wind turbine. Under de-rated operating conditions in which the power requested from a wind turbine is less than the available power, a controller adjusts blade pitch of the wind turbine to reduce the rotor power coefficient. The captured wind power is thereby reduced to be approximately equal to the requested electrical power, which is less than either the available power or the rated power of the wind turbine generator. This reduction in captured power provides the controller with an additional degree of freedom that allows the controller to increase the electrical power output of the wind turbine in response to wind fluctuations without damaging the wind turbine. By allowing increases in power under de-rated conditions, the controller may reduce the amount of pitching necessary to prevent the turbine from exceeding its rated power output level.
    Type: Application
    Filed: August 14, 2012
    Publication date: September 24, 2015
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Martin Ansbjerg Kjær, Eik Herbsleb
  • Patent number: 9097236
    Abstract: Method of operating a wind power plant including the steps of: operating the wind power plant at an current parameter schedule (Pcurrent(v)) performing a wind prediction of wind data (Vw) for a time frame (?T) extending to a future time T, determining a desired fatigue load level (Fdesired) of a wind power plant component at the future time T, and during operation of said wind power plant generating an updated parameter schedule (Pdesired(v)) to provide the desired fatigue load level (Fdesired) at time T if exposed to the predicted wind conditions (Vw(t)) during said time frame (?T).
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 4, 2015
    Assignee: Vestas Wind Systems A/S
    Inventors: Yu Zhou, Eik Herbsleb, Chris Spruce, Kelvin Hales
  • Patent number: 8821108
    Abstract: It is presented a method for controlling the instantaneous power output from a wind power plant. Wind speed and wind directions are determined, wherein an upper limit power output for the specific wind speed and wind direction is determined from a previously measured power output value at the same wind speed and wind direction, and wherein the power output of the wind power plant is controlled based on the determined upper limit power output. A wind power plant is also presented.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 2, 2014
    Assignee: Vestas Wind Systems A/S
    Inventors: Kouroush Nayebi, Eik Herbsleb
  • Publication number: 20140054893
    Abstract: A hydraulic transmission for a wind turbine that includes a rotor, one or more blades mounted to the rotor, a hydraulic pump mechanically connected to the rotor, and a hydraulic motor. The hydraulic pump and the hydraulic motor are connected to one another by a high pressure circuit. The hydraulic pump maybe a variable displacement hydraulic pump and the hydraulic motor may include a variable displacement hydraulic motor. The wind turbine, including the rotor, the blades of the rotor, the hydraulic pump, and the hydraulic motor may be controlled according to different approaches.
    Type: Application
    Filed: January 30, 2012
    Publication date: February 27, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Per Nielsen Lindholdt, Eik Herbsleb, Allan Holm Jørgensen, Christian Mark Nielsen, Hans Henrik Højsgaard, Peter Koldkjær, Kristian Gregerssen