Patents by Inventor Eisuke Haba

Eisuke Haba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9315384
    Abstract: The present invention provides a carbon nanomaterial production apparatus 1 that includes a reaction tube 2 into which raw material gas and carrier gas are supplied and accordingly in which carbon nanomaterial is grown, a connection tube 4 that is connected to the reaction tube 2 and through which an aerosol-like mixture of the carbon nanomaterial and the carrier gas passes, and a collection tube 3 that is connected to the connection tube 4 and collects the carbon nanomaterial from the mixture. The collection tube 3 includes a discharge section 32 that is located above a junction 33 with the connection tube 4 and discharges the carrier gas contained in the mixture to outside, and a trapping section 31 that is located below the junction 33 with the connection tube 4 and traps the carbon nanomaterial that is separated from the mixture by gravitational sedimentation.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 19, 2016
    Assignees: HITACHI CHEMICAL COMPANY, LTD., THE UNIVERSITY OF TOKYO
    Inventors: Suguru Noda, Toshio Osawa, Dong Young Kim, Eisuke Haba, Shunsuke Ueda
  • Publication number: 20160002033
    Abstract: A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
    Type: Application
    Filed: June 19, 2015
    Publication date: January 7, 2016
    Inventors: Suguru Noda, Dong Young Kim, Toshio Osawa, Hisashi Sugime, Kei Hasegawa, Eisuke Haba
  • Publication number: 20150307983
    Abstract: A drum sputtering device that can uniformly deposit target atoms on all over particles is provided. The drum sputtering device includes a vacuum container 2 that contains particles, a tubular drum 10 that is arranged inside the vacuum container 2 and at least one end face 10c of which is open, and a sputtering target 16 that is arranged inside the drum 10. With a supporting arm 11, a drive motor 12 for rotation, a drive motor 13 for swing, a first gear member 14, and a second gear member 15, the drum can be rotated around the axis of the drum 10 and the drum 10 can be swung so that one end portion 10e and the other end portion 10f in the axial direction of the drum 10 are relatively vertically switched.
    Type: Application
    Filed: August 21, 2013
    Publication date: October 29, 2015
    Inventors: Shunsuke Ueda, Eisuke Haba
  • Publication number: 20150218699
    Abstract: A heat exchanger type reaction tube includes a first tube part that forms a first flow channel into which a feed gas flows and in which the feed gas moves down; a second tube part that forms a second flow channel which is connected to the first flow channel and in which the feed gas moves up and that has a granular catalyst carrying support medium charged therein; and a heating device that heats the first tube part and the second tube part. Then, the first flow channel and the second flow channel are adjacent to each other while being separated from each other by a partition wall, and the second flow channel is provided with a distributor which holds the catalyst carrying support medium and through which the feed gas passes.
    Type: Application
    Filed: July 28, 2013
    Publication date: August 6, 2015
    Inventors: Suguru Noda, Dong Young Kim, Yusuke Kon, Zhongming Chen, Eisuke Haba, Shunsuke Ueda
  • Publication number: 20150217287
    Abstract: Single walled carbon nanotubes can be synthesized and production efficiency of carbon nanotubes can be enhanced by a method including a supplying step (S11) in which particulate carriers are supplied into a drum, a sputtering step (S12) for supporting a catalyst, in which sputtering is performed while this drum 10 is rotated around the axis and is swung so that one end portion and the other end portion in the axial direction of the drum 10 are relatively vertically switched, and a recovering step (S13) in which the particulate carriers are recovered by inclining the drum to discharge the particulate carriers from the drum.
    Type: Application
    Filed: August 8, 2013
    Publication date: August 6, 2015
    Inventors: Shunsuke Ueda, Eisuke Haba
  • Patent number: 9096435
    Abstract: The present invention relates to a method for producing carbon nanotubes, comprising a synthesis step of synthesizing carbon nanotubes on a support on which a catalyst is supported by flowing a source gas consisting of acetylene, carbon dioxide, and an inert gas over the support, wherein in the source gas, a partial pressure of the acetylene is 1.33×101 to 1.33×104 Pa, a partial pressure of the carbon dioxide is 1.33×101 to 1.33×104 Pa, and a partial pressure ratio of the acetylene to the carbon dioxide (acetylene/carbon dioxide) is in the range of 0.1 to 10.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: August 4, 2015
    Assignees: HITACHI CHEMICAL COMPANY, LTD., THE UNIVERSITY OF TOKYO
    Inventors: Eisuke Haba, Suguru Noda, Kei Hasegawa
  • Patent number: 9061909
    Abstract: A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: June 23, 2015
    Assignees: The University of Tokyo, Hitachi Chemical Company, Ltd.
    Inventors: Suguru Noda, Dong Young Kim, Toshio Osawa, Hisashi Sugime, Kei Hasegawa, Eisuke Haba
  • Publication number: 20150147263
    Abstract: The present invention relates to a method of producing carbon nanotubes, comprising a catalyst particle forming step of heating and reducing a catalyst raw material to form catalyst particles and a carbon nanotube synthesizing step of flowing a raw material gas onto the heated catalyst particles to synthesize carbon nanotubes, wherein a carbon-containing compound gas without an unsaturated bond is flowed onto the catalyst raw material and/or the catalyst particles in at least one of the catalyst particle forming step and the carbon nanotube synthesizing step.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 28, 2015
    Inventors: Suguru Noda, Zhongming Chen, Dong Young Kim, Shunsuke Ueda, Eisuke Haba
  • Publication number: 20150147262
    Abstract: The present invention relates to metal catalyst particles for carbon nanotube synthesis, comprising carbon-containing regions on their surfaces.
    Type: Application
    Filed: June 20, 2013
    Publication date: May 28, 2015
    Inventors: Suguru Noda, Zhongming Chen, Dong Young Kim, Shunsuke Ueda, Eisuke Haba
  • Publication number: 20130287674
    Abstract: The present invention relates to a method for producing carbon nanotubes, comprising a synthesis step of synthesizing carbon nanotubes on a support on which a catalyst is supported by flowing a source gas consisting of acetylene, carbon dioxide, and an inert gas over the support, wherein in the source gas, a partial pressure of the acetylene is 1.33×101 to 1.33×104 Pa, a partial pressure of the carbon dioxide is 1.33×101 to 1.33×104 Pa, and a partial pressure ratio of the acetylene to the carbon dioxide (acetylene/carbon dioxide) is in the range of 0.1 to 10.
    Type: Application
    Filed: October 26, 2011
    Publication date: October 31, 2013
    Inventors: Eisuke Haba, Suguru Noda, Kei Hasegawa
  • Publication number: 20130017142
    Abstract: The present invention provides a carbon nanomaterial production apparatus 1 that includes a reaction tube 2 into which raw material gas and carrier gas are supplied and accordingly in which carbon nanomaterial is grown, a connection tube 4 that is connected to the reaction tube 2 and through which an aerosol-like mixture of the carbon nanomaterial and the carrier gas passes, and a collection tube 3 that is connected to the connection tube 4 and collects the carbon nanomaterial from the mixture. The collection tube 3 includes a discharge section 32 that is located above a junction 33 with the connection tube 4 and discharges the carrier gas contained in the mixture to outside, and a trapping section 31 that is located below the junction 33 with the connection tube 4 and traps the carbon nanomaterial that is separated from the mixture by gravitational sedimentation.
    Type: Application
    Filed: February 17, 2011
    Publication date: January 17, 2013
    Applicants: HITACHI CHEMICAL COMPANY, LTD., The University of Tokyo
    Inventors: Suguru Noda, Toshio Osawa, Dong Young Kim, Eisuke Haba, Shunsuke Ueda
  • Publication number: 20120219490
    Abstract: A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 30, 2012
    Inventors: Suguru Noda, Dong Young Kim, Toshio Osawa, Hisashi Sugime, Kei Hasegawa, Eisuke Haba