Patents by Inventor Ekin Dogus Cubuk

Ekin Dogus Cubuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12080055
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an image representation neural network.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: September 3, 2024
    Assignee: Google LLC
    Inventors: Tsung-Yi Lin, Barret Zoph, Ekin Dogus Cubuk, Golnaz Ghiasi, Quoc V. Le
  • Publication number: 20240273410
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
    Type: Application
    Filed: December 18, 2023
    Publication date: August 15, 2024
    Inventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
  • Publication number: 20240242125
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.
    Type: Application
    Filed: February 22, 2024
    Publication date: July 18, 2024
    Inventors: Vijay Vasudevan, Barret Zoph, Ekin Dogus Cubuk, Quoc V. Le
  • Patent number: 12033038
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: July 9, 2024
    Assignee: Google LLC
    Inventors: Vijay Vasudevan, Barret Zoph, Ekin Dogus Cubuk, Quoc V. Le
  • Patent number: 11847541
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: December 19, 2023
    Assignee: Google LLC
    Inventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
  • Patent number: 11816577
    Abstract: Generally, the present disclosure is directed to systems and methods that generate augmented training data for machine-learned models via application of one or more augmentation techniques to audiographic images that visually represent audio signals. In particular, the present disclosure provides a number of novel augmentation operations which can be performed directly upon the audiographic image (e.g., as opposed to the raw audio data) to generate augmented training data that results in improved model performance. As an example, the audiographic images can be or include one or more spectrograms or filter bank sequences.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: November 14, 2023
    Assignee: GOOGLE LLC
    Inventors: Daniel Sung-Joon Park, Quoc Le, William Chan, Ekin Dogus Cubuk, Barret Zoph, Yu Zhang, Chung-Cheng Chiu
  • Publication number: 20230359898
    Abstract: Generally, the present disclosure is directed to systems and methods that generate augmented training data for machine-learned models via application of one or more augmentation techniques to audiographic images that visually represent audio signals. In particular, the present disclosure provides a number of novel augmentation operations which can be performed directly upon the audiographic image (e.g., as opposed to the raw audio data) to generate augmented training data that results in improved model performance. As an example, the audiographic images can be or include one or more spectrograms or filter bank sequences.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 9, 2023
    Inventors: Daniel Sung-Joon Park, Quoc Le, William Chan, Ekin Dogus Cubuk, Barret Zoph, Yu Zhang, Chung-Cheng Chiu
  • Publication number: 20230274532
    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Inventors: Jon Shlens, Ekin Dogus Cubuk, Quoc Le, Tsung-Yi Lin, Barret Zoph, Golnaz Ghiasi
  • Patent number: 11682191
    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: June 20, 2023
    Assignee: GOOGLE LLC
    Inventors: Jon Shlens, Ekin Dogus Cubuk, Quoc Le, Tsung-Yi Lin, Barret Zoph, Golnaz Ghiasi
  • Publication number: 20220301298
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an image representation neural network.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 22, 2022
    Inventors: Tsung-Yi Lin, Barret Zoph, Ekin Dogus Cubuk, Golnaz Ghiasi, Quoc V. Le
  • Publication number: 20220253704
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing optimization using an optimizer neural network. One of the methods includes for each optimizer network parameter, randomly sampling a perturbation value; generating a plurality of sets of candidate values for the optimizer network parameters, for each set of candidate values of the optimizer network parameters: determining a respective loss value representing a performance of the optimizer neural network in updating one or more sets of inner parameters in accordance with the set of candidate of values of the optimizer network parameters; and updating the current values of the optimizer network parameters based on the loss values for the plurality of sets of candidate values of the optimizer network parameters.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 11, 2022
    Inventors: Ekin Dogus Cubuk, Luke Shekerjian Metz, Samuel Stern Schoenholz, Amil A. Merchant
  • Publication number: 20220215682
    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Inventors: Jon Shlens, Ekin Dogus Cubuk, Quoc Le, Tsung-Yi Lin, Barret Zoph, Golnaz Ghiasi
  • Publication number: 20220114400
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
  • Patent number: 11301733
    Abstract: Example aspects of the present disclosure are directed to systems and methods for learning data augmentation strategies for improved object detection model performance. In particular, example aspects of the present disclosure are directed to iterative reinforcement learning approaches in which, at each of a plurality of iterations, a controller model selects a series of one or more augmentation operations to be applied to training images to generate augmented images. For example, the controller model can select the augmentation operations from a defined search space of available operations which can, for example, include operations that augment the training image without modification of the locations of a target object and corresponding bounding shape within the image and/or operations that do modify the locations of the target object and bounding shape within the training image.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: April 12, 2022
    Assignee: GOOGLE LLC
    Inventors: Jon Shlens, Ekin Dogus Cubuk, Quoc Le, Tsung-Yi Lin, Barret Zoph, Golnaz Ghiasi
  • Publication number: 20220012537
    Abstract: Generally, the present disclosure is directed to systems and methods that generate augmented training data for machine-learned models via application of one or more augmentation techniques to audiographic images that visually represent audio signals. In particular, the present disclosure provides a number of novel augmentation operations which can be performed directly upon the audiographic image (e.g., as opposed to the raw audio data) to generate augmented training data that results in improved model performance. As an example, the audiographic images can be or include one or more spectrograms or filter bank sequences.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Daniel Sung-Joon Park, Quoc V. Le, William Chan, Ekin Dogus Cubuk, Barret Zoph, Yu Zhang, Chung-Cheng Chiu
  • Patent number: 11205099
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 21, 2021
    Assignee: Google LLC
    Inventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
  • Publication number: 20210334651
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task by processing input data to the model. For example, the input data can include image, video, or point cloud data, and the task can be a perception task such as classification or detection task. In one aspect, the method includes receiving training data including a plurality of training inputs; receiving a plurality of data augmentation policy parameters that define different transformation operations for transforming training inputs before the training inputs are used to train the machine learning model; maintaining a plurality of candidate machine learning models; for each of the plurality of candidate machine learning models: repeatedly determining an augmented batch of training data; training the candidate machine learning model using the augmented batch of the training data; and updating the maintained data.
    Type: Application
    Filed: March 5, 2021
    Publication date: October 28, 2021
    Inventors: Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Jiquan Ngiam, Congcong Li, Jonathon Shlens, Shuyang Cheng
  • Patent number: 11138471
    Abstract: Generally, the present disclosure is directed to systems and methods that generate augmented training data for machine-learned models via application of one or more augmentation techniques to audiographic images that visually represent audio signals. In particular, the present disclosure provides a number of novel augmentation operations which can be performed directly upon the audiographic image (e.g., as opposed to the raw audio data) to generate augmented training data that results in improved model performance. As an example, the audiographic images can be or include one or more spectrograms or filter bank sequences.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: October 5, 2021
    Assignee: Google LLC
    Inventors: Daniel Sung-Joon Park, Quoc Le, William Chan, Ekin Dogus Cubuk, Barret Zoph, Yu Zhang, Chung-Cheng Chiu
  • Publication number: 20210097348
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
    Type: Application
    Filed: March 27, 2020
    Publication date: April 1, 2021
    Inventors: Jonathon Shlens, Quoc V. Le, Ekin Dogus Cubuk, Barret Zoph
  • Publication number: 20210019658
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Inventors: Vijay Vasudevan, Barret Zoph, Ekin Dogus Cubuk, Quoc V. Le