Patents by Inventor Elaine Gee

Elaine Gee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230352186
    Abstract: Techniques for sensor calibration involve determining a generative model using sensor measurements from different instances of a first glucose sensor together with corresponding reference glucose values. The generative model is configured to generate a simulated measurement representing a predicted output of the first glucose sensor under specific operating conditions. A set of simulated measurements is generated using operating conditions observed with respect to a second glucose sensor as inputs to the generative model. The second glucose sensor is a sensor of a different design. The operating conditions observed with respect to the second glucose sensor include reference glucose values obtained in connection with measurements made using the second glucose sensor. The simulated measurements are then used to determine an estimation model for the first glucose sensor. The estimation model is configured to estimate glucose level given one or more sensor measurements from the first glucose sensor.
    Type: Application
    Filed: June 29, 2023
    Publication date: November 2, 2023
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith G. Nogueira
  • Publication number: 20230332229
    Abstract: The present disclosure provides methods and systems directed to cell-free identification and/or monitoring of pregnancy-related states. A method for identifying or monitoring a presence or susceptibility of a pregnancy-related state of a subject may comprise assaying a cell-free biological sample derived from said subject to detect a set of biomarkers, and analyzing the set of biomarkers with a trained algorithm to determine the presence or susceptibility of the pregnancy-related state.
    Type: Application
    Filed: February 10, 2023
    Publication date: October 19, 2023
    Inventors: Maneesh Jain, Eugeni Namsaraev, Morten Rasmussen, Joan Camunas Soler, Farooq Siddiqui, Mitsu Reddy, Elaine Gee, Arkady Khodursky, Rory Nolan, Manfred Lee
  • Publication number: 20230260664
    Abstract: Disclosed are methods and corresponding systems and devices for providing an estimation model for use with one or more instances of a particular sensor. In some aspects, an estimation model usable for estimating a value of a physiological condition is determined based at least in part on simulated measurements. The simulated measurements are generated for a first sensor, through applying a translation model to convert historical measurements associated with a second sensor into measurements that would have been produced by the first sensor. The second sensor has a different design or configuration than the first sensor. The historical measurements represent changes in the physiological condition as observed by different instances of the second sensor. The estimation model can be made available to one or more electronic devices, including at least one device configured to apply the estimation model to a measurement from a corresponding instance of the first sensor.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith G. Nogueira
  • Patent number: 11670425
    Abstract: Medical devices and related systems and methods are provided. A method of estimating a physiological condition involves determining a translation model based at least in part on relationships between first measurement data corresponding to instances of a first sensing arrangement and second measurement data corresponding to instances of a second sensing arrangement, obtaining third measurement data associated with the second sensing arrangement, determining simulated measurement data for the first sensing arrangement by applying the translation model to the third measurement data, and determining an estimation model for a physiological condition using the simulated measurement data, wherein the estimation model is applied to subsequent measurement output provided by an instance of the first sensing arrangement to obtain an estimated value for the physiological condition.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 6, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira
  • Publication number: 20230004815
    Abstract: An example method for calibrating a glucose sensor includes determining, by one or more processors, a set of electrical parameters for the glucose sensor of a plurality of glucose sensors and determining, by the one or more processors, a cluster for the glucose sensor based on the set of electrical parameters. Each cluster of the plurality of clusters identifies respective configuration information. In this example, the method includes configuring, by the one or more processors, the glucose sensor to determine a glucose level of a patient based on configuration information identified by the determined cluster.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 5, 2023
    Inventors: Elaine Gee, Francesca Piccinini, Li Zhou, Chi A Tran, Farhad Batmanghelich, Leonardo Nava-Guerra, Juan Enrique Arguelles Morales, Anuj M. Patel, Sarkis D. Aroyan
  • Publication number: 20220189630
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.
    Type: Application
    Filed: December 14, 2020
    Publication date: June 16, 2022
    Inventors: ELAINE GEE, JEFFREY NISHIDA, PETER AJEMBA, KEITH NOGUEIRA, ANDREA VARSAVSKY
  • Publication number: 20220189631
    Abstract: Methods, systems, and devices for improving continuous glucose monitoring (“CGM”) are described herein. More particularly, the methods, systems, and devices describe retrieving a machine learning model that is trained to classify CGM sensor data and blanking the CGM sensor data based on an outlier classification from the machine learning model. The system may terminate sensors for which there is an aggregation of blanked CGM sensor data. The methods, systems, and devices described herein may additionally comprise a machine learning model that is trained to detect and correct for erroneous sensor use conditions based on error patterns in sensor data. The system may determine resolutions for correcting the detected erroneous sensor use conditions.
    Type: Application
    Filed: January 29, 2021
    Publication date: June 16, 2022
    Inventors: ELAINE GEE, JEFFREY NISHIDA, PETER AJEMBA, KEITH NOGUEIRA, ANDREA VARSAVSKY
  • Publication number: 20210174960
    Abstract: Medical devices and related systems and methods are provided.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 10, 2021
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira
  • Publication number: 20210174949
    Abstract: Medical devices and related systems and methods are provided. A method of estimating a physiological condition involves determining a translation model based at least in part on relationships between first measurement data corresponding to instances of a first sensing arrangement and second measurement data corresponding to instances of a second sensing arrangement, obtaining third measurement data associated with the second sensing arrangement, determining simulated measurement data for the first sensing arrangement by applying the translation model to the third measurement data, and determining an estimation model for a physiological condition using the simulated measurement data, wherein the estimation model is applied to subsequent measurement output provided by an instance of the first sensing arrangement to obtain an estimated value for the physiological condition.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 10, 2021
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira
  • Publication number: 20210170103
    Abstract: Medical devices and related systems and methods are provided. A method of estimating a physiological condition using a first sensing arrangement involves obtaining a sensor translation model associated with a relationship between the first sensing arrangement and a second sensing arrangement, wherein the second sensing arrangement is different from the first sensing arrangement, obtaining one or more measurements from a sensing element coupled to the processing system of the first sensing arrangement, determining simulated measurement data for the second sensing arrangement by applying the sensor translation model to the one or more measurements from the sensing element of the first sensing arrangement, and determining an estimated value for the physiological condition by applying an estimation model associated with the second sensing arrangement to the simulated measurement data.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 10, 2021
    Inventors: Elaine Gee, Peter Ajemba, Bahman Engheta, Jeffrey Nishida, Andrea Varsavsky, Keith Nogueira
  • Publication number: 20200245910
    Abstract: A continuous glucose monitoring system may utilize electrode current (Isig) signals, Electrochemical Impedance Spectroscopy (EIS), and Vcntr values to optimize sensor glucose (SG) calculation in such a way as to enable reduction of the need for blood glucose (BG) calibration requests from users.
    Type: Application
    Filed: January 27, 2020
    Publication date: August 6, 2020
    Inventors: Georgios Mallas, Andrea Varsavsky, Peter Ajemba, Jeffrey Nishida, Keith Nogueira, Elaine Gee, Leonardo Nava-Guerra, Jing Liu, Sadaf S. Seleh, Taly G, Engel, Benyamin Grosman, Steven Lai, Luis A. Torres, Chi A. Tran, David M. Sniecinski