Patents by Inventor Elbert L. Rutan

Elbert L. Rutan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8960590
    Abstract: A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: February 24, 2015
    Inventor: Elbert L. Rutan
  • Publication number: 20150021428
    Abstract: A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventor: Elbert L. Rutan
  • Patent number: 8727264
    Abstract: An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: May 20, 2014
    Inventor: Elbert L. Rutan
  • Patent number: 7540145
    Abstract: The hybrid rocket system of this invention is characterized by use of an oxidizer tank having a cylindrical midsection surrounded by a skirt and bonded thereto by a layer of elastomeric adhesive. The skirt outer surface is in turn adhesively secured to a spacecraft inner surface. An elongated solid-fuel motor case is mechanically rigidly secured to a central rear surface of the tank, and the case terminates in a throat and nozzle. The elastomeric-adhesive bonding of tank to skirt, and rigid adhesion of skirt to spacecraft forms the sole support for the rocket system, and separate support for the motor case is not required.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: June 2, 2009
    Assignee: Mojave Aerospace Ventures, LLC
    Inventor: Elbert L. Rutan
  • Patent number: 7195207
    Abstract: A rocket-powered spacecraft having a wing which has hinged aft portions which can be elevated about a hinge line. Tail booms extend rearwardly from the outer ends of the aft wing portions, and rudders are mounted at the aft ends of the booms. Each tail boom supports a horizontal tail with an elevon at its trailing edge. In normal flight, the wing aft portions are not elevated, and the wing has a normal airfoil shape. During atmosphere reentry, the wing aft portions are steeply elevated to provide a stable high-drag altitude for the spaceship for speed reduction at low thermal and structural loading. After reentry, the aft wing is returned to an unelevated position which enables gliding flight to a horizontal-runway landing.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: March 27, 2007
    Assignee: Mojave Aerospace Ventures, LLC
    Inventor: Elbert L. Rutan
  • Patent number: 6089504
    Abstract: A jet aircraft has a generally cylindrical fuselage section defining a passenger compartment and a generally conical aft fuselage section having a maximum lateral dimension substantially smaller than the lateral dimension of the fuselage section. A propulsion engine is mounted on the vertical stabilizer of the fuselage and has an air inlet disposed entirely within a rearward projection of the fuselage passenger compartment to preclude the ingestion of foreign objects into the engine.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Williams Internaitonal Co., L.L.C.
    Inventors: Samuel B. Williams, Elbert L. Rutan
  • Patent number: 5769359
    Abstract: An aircraft control system for controlling an aircraft, particularly a free wing aircraft in low speed or hover regimes. An air speed sensor measures air speed of the aircraft and outputs an air speed signal to a control processor which processes the air speed signal with a speed control input signal. A control actuator actuates an aircraft control surface in response to the control surface control signal. The air speed sensor may include a shaft mounted impeller located in an airstream of the aircraft. A rotational speed sensor, coupled to the impeller, measures a rotational speed of the impeller and outputs a rotational speed signal as the air speed signal. In an alternative embodiment, the air speed sensor may include a vane located in an airstream of the aircraft and deflected in response to air flow in the airstream.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 23, 1998
    Assignee: Freewing Aerial Robotics Corporation
    Inventors: Elbert L. Rutan, Christophe Chevallier
  • Patent number: 5395073
    Abstract: A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively adjacent fixed wing inboard or center root sections fixedly attached to the fuselage for free rotation about a spanwise access. Horizontal and vertical tail surfaces are located at the rear end of a boom assembly rotatably connected to the fuselage. A gearing or screw rod arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage in relation to the tail boom assembly to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: March 7, 1995
    Assignee: Freewing Aerial Robotics Corporation
    Inventors: Elbert L. Rutan, Hugh J. Schmittle
  • Patent number: 4641800
    Abstract: This invention relates to a tandem or multi-winged aircraft wherein a primary wing system is so designed and equipped that it is capable of being actuated in a manner to bring about a shift in the neutral point of the craft relative to its center of gravity and wherein a secondary wing system located ahead of the primary one and movable fore and aft relative to the latter is deployed and angled during its excursion so as to effectively counteract the neutral point shift that would be brought about by deploying the primary wing system alone thereby maintaining the neutral point at approximately its former location in at least both the cruise mode as well as the high-lift mode preferred for landing and take-off.
    Type: Grant
    Filed: August 18, 1983
    Date of Patent: February 10, 1987
    Inventor: Elbert L. Rutan
  • Patent number: 4614320
    Abstract: A support and actuating system for large Fowler-type flaps on the trailing edge of an aircraft wing. Each flap is vertically and laterally supported at diagonally opposite corners, and the remaining leading-edge corner is vertically supported and laterally free to permit smooth and simple actuation. The flap is constructed to be torsionally stiff to eliminate need for conventional multiple flap tracks and support at the remaining trailing-edge corner. Elimination of some or all external tracks on the wing tracks provides a clean low-drag wing when the flaps are retracted in cruising flight, while enabling simple deployment of unusually large flaps for increased lift during landing, takeoff, and other low speed conditions. The flap system is useful on straight or rearwardly swept wings, and is particularly adapted to forwardly swept wings.
    Type: Grant
    Filed: March 27, 1984
    Date of Patent: September 30, 1986
    Inventor: Elbert L. Rutan
  • Patent number: D292393
    Type: Grant
    Filed: August 18, 1983
    Date of Patent: October 20, 1987
    Inventor: Elbert L. Rutan