Patents by Inventor Eldon Gerrald Leaphart

Eldon Gerrald Leaphart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6498971
    Abstract: A steering angle sensor providing an output signal indicating relative position within a full rotation, such as a relative dual track steering sensor, provides a signal to a digital processor coupled to a non-volatile memory for storing retained values of a centered vehicle steer angle, a rotation count and a mounting bias angle. The processor derives three test steer angle values utilizing, respectively, (1) the retained rotation count, (2) one greater than the retained rotation count and (3) one less than the retained rotation count and chooses as an initialized steer angle one of the three test steer angles that differs from the retained value of a centered vehicle steer angle by less than a first calibration value.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 24, 2002
    Assignee: Delphi Technologies, Inc.
    Inventor: Eldon Gerrald Leaphart
  • Patent number: 6481806
    Abstract: A vehicle brake control providing understeer correction through an increase in differential brake pressure favoring the inside wheel applies the increase, in the absence of anti-lock braking activity, across the rear wheels unless one or more sensors indicates a likely low traction condition on the inside rear wheel, in which case the increase is applied to the front pair of wheels. Preferred sensors include a suspension position sensor for the inside rear wheel or other sensor derived information from a suspension control system that indicates large body roll in a turn together with forward body pitch. In the absence of a suspension control system, preferred sensors include vehicle lateral and longitudinal accelerometers indicating vehicle roll and pitch together with a steer angle sensor indicating a significant turn. An indication could also be derived from a normal force sensor on the wheel or normal force information derived from other sensors such as a tire pressure sensor.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: November 19, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric Edward Krueger, Raymond Kurt Schubert, Steven Paul Loudon, Eldon Gerrald Leaphart
  • Publication number: 20020133278
    Abstract: A steering angle sensor providing an output signal indicating relative position within a full rotation, such as a relative dual track steering sensor, provides a signal to a digital processor coupled to a non-volatile memory for storing retained values of a centered vehicle steer angle, a rotation count and a mounting bias angle. The processor derives three test steer angle values utilizing, respectively, (1) the retained rotation count, (2) one greater than the retained rotation count and (3) one less than the retained rotation count and chooses as an initialized steer angle one of the three test steer angles that differs from the retained value of a centered vehicle steer angle by less than a first calibration value.
    Type: Application
    Filed: March 13, 2001
    Publication date: September 19, 2002
    Inventor: Eldon Gerrald Leaphart
  • Patent number: 6219602
    Abstract: A vehicle suspension control includes a vehicle body control responsive to body/wheel velocity at the corners of the vehicle body to derive a demand force command for dampers at each corner of the vehicle body for vehicle body control and applies each of the derived demand force commands to its respective damper only when a comparison of the direction of the demand force command with the sensed relative velocity of the damper indicates that a force corresponding to the demand force command can be effectively exerted by the damper. But the suspension control also includes a vehicle stability control responsive to an indicated vehicle lateral acceleration in a turn to determine, independently of the vehicle body control, a stability compression damping command for the suspension dampers on the side of the vehicle opposite the direction of the lateral acceleration and a stability rebound damping command for the suspension dampers on the side of the vehicle in the direction of the lateral acceleration.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: April 17, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: Scott Wilson Badenoch, David Andrew Shal, Albert Victor Fratini, Jr., Karen Marie Connair, Eldon Gerrald Leaphart, Raymond Kurt Schubert
  • Patent number: 5895433
    Abstract: A vehicle chassis system control method, comprising the steps of: measuring vehicle yaw rate, vehicle speed, and vehicle lateral acceleration; determining, responsive to the yaw rate, vehicle speed and lateral acceleration, an index ratio; comparing the index ratio to a predetermined threshold indicating a limit above which active chassis control is not desired; and responsive to the comparison, setting a signal indicating termination of active chassis control if the index ratio is above the predetermined threshold.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: April 20, 1999
    Assignee: General Motors Corporation
    Inventors: Hsien Heng Chen, Eldon Gerrald Leaphart, Edward John Bedner, Yuen-Kwok Chin
  • Patent number: 5857160
    Abstract: A sensor-responsive control method for use on a motor vehicle, comprising the steps of: measuring a vehicle yaw rate; measuring a vehicle lateral acceleration; responsive to the measured yaw rate and lateral acceleration, estimating a steering wheel angle; determining an error signal responsive to the difference between the estimated steering wheel angle and an adaptive steering position signal; and updating the adaptive steering position signal responsive to the error signal, wherein the adaptive steering position signal is quickly determined after the vehicle begins to move.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: January 5, 1999
    Assignee: General Motors Corporation
    Inventors: John E. Dickinson, Douglass L. Carson, Mutasim Abdurrahman Salman, Stephen Robert Pastor, Gordon Leo Tierney, Hong Xing Hu, Todd Brown, Alan James Lee, Eldon Gerrald Leaphart
  • Patent number: 5696677
    Abstract: A vehicle chassis system control according to the steps of: determining relative velocity between a corner of a vehicle body and a vehicle wheel responsive to a sensor signal from one of: (i) a relative position sensor mounted between the vehicle body corner and the vehicle wheel and (ii) a wheel rotational velocity sensor mounted to the wheel; estimating, responsive to the sensor signal, a body acceleration signal indicative of a vertical acceleration of the corner of the vehicle body; estimating, responsive to the sensor signal, a wheel acceleration signal indicative of a vertical acceleration of the vehicle wheel; estimating a dynamic normal force between the wheel and a road surface responsive to the estimated body and wheel accelerations; and providing the estimated normal dynamic force to a chassis system controller, wherein a chassis system actuator is controlled by a control command determined responsive to the estimated dynamic normal force.
    Type: Grant
    Filed: October 23, 1995
    Date of Patent: December 9, 1997
    Assignee: General Motors Corporation
    Inventors: Eldon Gerrald Leaphart, Edward John Bedner, Richard Charles Swortzel, Albert Victor Fratini, Jr., Kamal Naif Majeed