Patents by Inventor Elena Daniela Lavric

Elena Daniela Lavric has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850564
    Abstract: A flow reactor includes a flow reactor module having a heat exchange fluid enclosure with an inner surface sealed against a surface of a process fluid module, the inner surface having two or more raised ridges crosswise to a heat exchange flow direction from an inflow port or location to an outflow port or location and having a gap of greater than 0.1 mm between the two or more raised ridges and the surface of the process module.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 26, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Sylvain Maxime F Gremetz, Elena Daniela Lavric
  • Publication number: 20230381734
    Abstract: A flow reactor includes a flow reactor module having a heat exchange fluid enclosure with an inner surface sealed against a surface of a process fluid module, the inner surface having two or more grooves therein extending in a second direction at least partially crosswise to the first direction, at least two of the two or more grooves each having positioned therein a respective wall extending both into the respective groove and out of the respective groove beyond the inner surface.
    Type: Application
    Filed: September 22, 2021
    Publication date: November 30, 2023
    Inventors: Sylvain Maxime F Gremetz, Elena Daniela Lavric
  • Patent number: 11679368
    Abstract: A flow reactor has a module having a process fluid passage with an interior surface, a portion of the passage including a cross section along the portion having a cross-sectional shape, and a cross-sectional area with multiple minima along the passage. The cross-sectional shape varies continually along the portion and the interior surface of the portion includes either no pairs of opposing flat parallel sides or only pairs of opposing flat parallel sides which extend for a length of no more than 4 times a distance between said opposing flat parallel sides along the portion and the portion contains a plurality of obstacles distributed along the portion.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 20, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Patrick Jean, Elena Daniela Lavric
  • Publication number: 20220274082
    Abstract: A flow reactor includes a flow reactor module having a heat exchange fluid enclosure with an inner surface sealed against a surface of a process fluid module, the inner surface having two or more raised ridges crosswise to a heat exchange flow direction from an inflow port or location to an outflow port or location and having a gap of greater than 0.1 mm between the two or more raised ridges and the surface of the process module.
    Type: Application
    Filed: August 31, 2020
    Publication date: September 1, 2022
    Inventors: Sylvain Maxime F Gremetz, Elena Daniela Lavric
  • Publication number: 20220055009
    Abstract: A flow reactor has a module having a process fluid passage with an interior surface, a portion of the passage including a cross section along the portion having a cross-sectional shape, and a cross-sectional area with multiple minima along the passage. The cross-sectional shape varies continually along the portion and the interior surface of the portion includes either no pairs of opposing flat parallel sides or only pairs of opposing flat parallel sides which extend for a length of no more than 4 times a distance between said opposing flat parallel sides along the portion and the portion contains a plurality of obstacles distributed along the portion.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Patrick Jean, Elena Daniela Lavric
  • Patent number: 11192084
    Abstract: A flow reactor has a module having a process fluid passage with an interior surface, a portion of the passage including a cross section along the portion having a cross-sectional shape, and a cross-sectional area with multiple minima along the passage. The cross-sectional shape varies continually along the portion and the interior surface of the portion includes either no pairs of opposing flat parallel sides or only pairs of opposing flat parallel sides which extend for a length of no more than 4 times a distance between said opposing flat parallel sides along the portion and the portion contains a plurality of obstacles distributed along the portion.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: December 7, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Patrick Jean, Elena Daniela Lavric
  • Publication number: 20200246772
    Abstract: A flow reactor has a module having a process fluid passage with an interior surface, a portion of the passage including a cross section along the portion having a cross-sectional shape, and a cross-sectional area with multiple minima along the passage. The cross-sectional shape varies continually along the portion and the interior surface of the portion includes either no pairs of opposing flat parallel sides or only pairs of opposing flat parallel sides which extend for a length of no more than 4 times a distance between said opposing flat parallel sides along the portion and the portion contains a plurality of obstacles distributed along the portion.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 6, 2020
    Inventors: Patrick Jean, Elena Daniela Lavric
  • Patent number: 10399058
    Abstract: A flow reactor has a module (12) that comprises at least first (20), second (30), and third (40) parallel plates stacked temporarily or permanently together and defining a first thermal fluid layer (25) between the first (20) and second plates (30) and a process fluid layer (35) between the second (30) and third plates (40), the process fluid layer (35) comprising a process fluid passage (32) having two or more U-bends and three or more successive process fluid passage segments joined by respective U-bends, the first thermal fluid layer (25) comprising at least two open thermal fluid channels (26) in the second plate (30), the at least two open channels (26) positioned, when viewed in a plan view of the module (12), between respective adjacent process fluid passage segments.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: September 3, 2019
    Assignee: CORNING INCORPORATED
    Inventor: Elena Daniela Lavric
  • Patent number: 10183269
    Abstract: A flow reactor fluidic module (12) includes a reactant fluid module (20) having an internal process fluid passage (22) and a first major planar outer surface (24a) and a thermal resistance R between the internal process fluid passage (22) and the first major planar surface (24); a thermal control fluid module (30) having an internal thermal control fluid passage (32) and a second major planar outer surface (34a); a holding structure (50) holding the reactant fluid module (20) and the thermal control fluid module (30); and a gap (25) separating the first major planar surface (24a) from the second major planar surface (34a). The gap (25) comprises an interchangeable or replaceable substance or sheet (26) having a thermal resistance G across the gap (25), wherein G is not equal to R.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: January 22, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Sylvain Maxime F Gremetz, Elena Daniela Lavric, Olivier Lobet
  • Publication number: 20180311641
    Abstract: A flow reactor fluidic module (12) includes a reactant fluid module (20) having an internal process fluid passage (22) and a first major planar outer surface (24a) and a thermal resistance R between the internal process fluid passage (22) and the first major planar surface (24); a thermal control fluid module (30) having an internal thermal control fluid passage (32) and a second major planar outer surface (34a); a holding structure (50) holding the reactant fluid module (20) and the thermal control fluid module (30); and a gap (25) separating the first major planar surface (24a) from the second major planar surface (34a). The gap (25) comprises an interchangeable or replaceable substance or sheet (26) having a thermal resistance G across the gap (25), wherein G is not equal to R.
    Type: Application
    Filed: June 10, 2016
    Publication date: November 1, 2018
    Inventors: Sylvain Maxime F Gremetz, Elena Daniela Lavric, Olivier Lobet
  • Publication number: 20180161747
    Abstract: A flow reactor has a module (12) that comprises at least first (20), second (30), and third (40) parallel plates stacked temporarily or permanently together and defining a first thermal fluid layer (25) between the first (20) and second plates (30) and a process fluid layer (35) between the second (30) and third plates (40), the process fluid layer (35) comprising a process fluid passage (32) having two or more U-bends and three or more successive process fluid passage segments joined by respective U-bends, the first thermal fluid layer (25) comprising at least two open thermal fluid channels (26) in the second plate (30), the at least two open channels (26) positioned, when viewed in a plan view of the module (12), between respective adjacent process fluid passage segments.
    Type: Application
    Filed: June 10, 2016
    Publication date: June 14, 2018
    Inventor: Elena Daniela Lavric
  • Patent number: 9259705
    Abstract: A microreactor device (100) comprises a microcircuit (110) defining a reaction microchamber (112) containing a liquid and reaction medium (114), in which a chemical reaction takes place generating the gas (116), and is characterized in that the device (100) is disposed substantially vertically or inclined, defining an upper part (120) and a lower part (130) of the microchamber, and in that means (150) are provided in the upper part (120) of the said microcircuit for the in situ collection and removal of the gas formed during the reaction.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 16, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Elena Daniela Lavric, Ronan Tanguy
  • Patent number: 8951485
    Abstract: A microreactor includes a plurality of interconnected microstructures arranged in m process units with the process units configured to be operable together in parallel. Each of the m process units has a number n of respective process fluid inlets, wherein a number y of the n respective process fluid inlets are connected individually to respective non-manifolded fluid pumps, and wherein a number n minus y of the n respective process fluid inlets are connected to a respective manifolded fluid pump via a manifold, wherein y is an integer from 1 to n?1 inclusive.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: February 10, 2015
    Assignee: Corning Incorporated
    Inventors: Mikhail Sergeevich Chivilikhin, Sylvain Maxime F Gremetz, Roland Guidat, Elena Daniela Lavric, Olivier Lobet, Pierre Woehl
  • Patent number: 8534909
    Abstract: A microfluidic device comprises at least one reactant passage defined by walls and comprising at least one parallel multiple flow path configuration comprising a group of elementary design patterns being able to provide mixing and/or residence time which are arranged in series with fluid communication so as to constitute flow paths, and in parallel so as to constitute a multiple flow path elementary design pattern, wherein the parallel multiple flow path configuration comprises at least two communicating zones between elementary design patterns of two adjacent parallel flow paths, said communicating zones being in the same plane as that defined by said elementary design patterns between which said communicating zone is placed and allowing passage of fluid in order to minimize mass flow rate difference between adjacent parallel flow paths which have the same flow direction.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 17, 2013
    Assignee: Corning Incorporated
    Inventors: Roland Guidat, Elena Daniela Lavric, Olivier Lobet, Pierre Woehl
  • Patent number: 8485247
    Abstract: A multiple-layered microfluidic device includes at least a first fluid path and at least a second fluid path, wherein the first fluid path includes a layer or portion of a layer of the microfluidic device. The first path has multiple rows of serpentine wall segments positioned there along. The wall segments extend in a direction along the first path. The rows extend along a direction cross-ways to the first path. Adjacent ones of wall segments within a row are arranged such that concave portions face concave portions of adjacent ones of segments, while convex portions face convex portions of adjacent ones of segments.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: July 16, 2013
    Assignee: Corning Incorporated
    Inventor: Elena Daniela Lavric
  • Publication number: 20130055896
    Abstract: A microreactor device (100) comprises a microcircuit (110) defining a reaction microchamber (112) containing a liquid and reaction medium (114), in which a chemical reaction takes place generating the gas (116), and is characterized in that the device (100) is disposed substantially vertically or inclined, defining an upper part (120) and a lower part (130) of the microchamber, and in that means (150) are provided in the upper part (120) of the said microcircuit for the in situ collection and removal of the gas formed during the reaction.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 7, 2013
    Inventors: Elena Daniela Lavric, Ronan Tanguy
  • Patent number: 7939033
    Abstract: A microfluidic device [10] includes at least one reactant passage [26] and one or more thermal control passages defined therein, the one or more thermal control passages being positioned and arranged within two volumes [12,14] each bordered by a wall [18,20], the walls being generally planar and parallel to one another, the reactant passage positioned between said generally planar walls and defined by said generally planar walls and walls [28] extending between said generally planar walls, wherein the reactant passage comprises multiple successive chambers [34], each such chamber including a split of the reactant passage into at least two sub-passages [36], and a joining [38] of the split passages, and a change of passage direction, of at least one of the sub-passages, of at least 90 degrees.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Elena Daniela Lavric, Pierre Woehl
  • Publication number: 20100132801
    Abstract: A microreactor includes a plurality of interconnected microstructures arranged in m process units with the process units configured to be operable together in parallel. Each of the m process units has a number n of respective process fluid inlets, wherein a number y of the n respective process fluid inlets are connected individually to respective non-manifolded fluid pumps, and wherein a number n minus y of the n respective process fluid inlets are connected to a respective manifolded fluid pump via a manifold, wherein y is an integer from 1 to n-1 inclusive.
    Type: Application
    Filed: November 23, 2009
    Publication date: June 3, 2010
    Inventors: Mikhail Sergeevich Chivilikhin, Sylvain Maxime F. Gremetz, Roland Guidat, Elena Daniela Lavric, Olivier Lobet, Pierre Woehl
  • Publication number: 20100126699
    Abstract: A multiple-layered microfluidic device comprises at least a first fluid path and at least a second fluid path, wherein the first fluid path comprises a layer or portion of a layer of the microfluidic device. The first path has multiple rows of serpentine wall segments positioned there along. The wall segments extend in a direction along the first path. The rows extend along a direction cross-ways to the first path. Adjacent ones of wall segments within a row are arranged such that concave portions face concave portions of adjacent ones of segments, while convex portions face convex portions of adjacent ones of segments.
    Type: Application
    Filed: November 23, 2009
    Publication date: May 27, 2010
    Inventor: Elena Daniela Lavric
  • Publication number: 20100078086
    Abstract: A microfluidic device comprises at least one reactant passage defined by walls and comprising at least one parallel multiple flow path configuration comprising a group of elementary design patterns being able to provide mixing and/or residence time which are arranged in series with fluid communication so as to constitute flow paths, and in parallel so as to constitute a multiple flow path elementary design pattern, wherein the parallel multiple flow path configuration comprises at least two communicating zones between elementary design patterns of two adjacent parallel flow paths, said communicating zones being in the same plane as that defined by said elementary design patterns between which said communicating zone is placed and allowing passage of fluid in order to minimize mass flow rate difference between adjacent parallel flow paths which have the same flow direction.
    Type: Application
    Filed: September 28, 2009
    Publication date: April 1, 2010
    Inventors: Roland Guidat, Elena Daniela Lavric, Olivier Lobet, Pierre Woehl