Patents by Inventor Elena Rogojina

Elena Rogojina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471170
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: June 25, 2013
    Assignee: Innovalight, Inc.
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Publication number: 20120280183
    Abstract: A ceramic boron-containing dopant paste is disclosed. The ceramic boron-containing dopant paste further comprising a set of solvents, a set of ceramic particles dispersed in the set of solvents, a set of boron compound particles dispersed in the set of solvents, a set of binder molecules dissolved in the set of solvents. Wherein, the ceramic boron-containing dopant paste has a shear thinning power law index n between about 0.01 and about 1.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Inventors: Maxim Kelman, Elena Rogojina, Gonghou Wang
  • Publication number: 20120145967
    Abstract: A high-fidelity dopant paste is disclosed. The high-fidelity dopant paste includes a solvent, a set of non-glass matrix particles dispersed into the solvent, and a dopant.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Elena Rogojina, Maxim Kelman, Giuseppe Scardera
  • Publication number: 20120094033
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Publication number: 20120083104
    Abstract: A method of forming a floating junction on a substrate is disclosed. The method includes providing the substrate doped with boron atoms, the substrate comprising a front surface and a rear surface. The method also includes depositing a set of masking particles on the rear surface in a set of patterns; and heating the substrate in a baking ambient to a first temperature and for a first time period in order to create a particle masking layer. The method further includes exposing the substrate to a phosphorous deposition ambient at a second temperature and for a second time period, wherein a front surface PSG layer, a front surface phosphorous diffusion, a rear surface PSG layer, and a rear surface phosphorous diffusion are formed, and wherein a first phosphorous dopant surface concentration in the substrate proximate to the set of patterns is less than a second dopant surface concentration in the substrate not proximate to the set of patterns.
    Type: Application
    Filed: June 29, 2011
    Publication date: April 5, 2012
    Inventors: Malcolm Abbott, Maxim KELMAN, Eric ROSENFELD, Elena ROGOJINA, Giuseppe SCARDERA
  • Patent number: 8138070
    Abstract: A method of forming a multi-doped junction is disclosed. The method includes providing a first substrate and a second substrate. The method also includes depositing a first ink on a first surface of each of the first substrate and the second substrate, the first ink containing a first set of nanoparticles and a first set of solvents, the first set of nanoparticles containing a first concentration of a first dopant. The method further includes depositing a second ink on a second surface of each of the first substrate and the second substrate, the second ink containing a second set of nanoparticles and a second set of solvents, the second set of nanoparticles containing a second concentration of a second dopant. The method also includes placing the first substrate and the second substrate in a back to back configuration; and heating the first substrate and the second substrate in a first drive-in ambient to a first temperature and for a first time period.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 20, 2012
    Assignee: Innovalight, Inc.
    Inventors: Maxim Kelman, Michael Burrows, Dmitry Poplavskyy, Giuseppe Scardera, Daniel Kray, Elena Rogojina
  • Patent number: 7998359
    Abstract: A method for selectively etching a silicon-containing film on a silicon substrate is disclosed. The method includes depositing a silicon-containing film on the silicon substrate. The method further includes baking the silicon-containing film to create a densified silicon-containing film, wherein the densified film has a first thickness. The method also includes exposing the silicon substrate to an aqueous solution comprising NH4F and HF in a ratio of between about 6:1 and about 100:1, at a temperature of between about 20° C. and about 50° C., and for a time period of between about 30 seconds and about 5 minutes; wherein between about 55% and about 95% of the densified silicon-containing film is removed.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: August 16, 2011
    Assignee: Innovalight, Inc.
    Inventors: Elena Rogojina, Eric Rosenfeld, Dmitry Poplavskyy
  • Patent number: 7943846
    Abstract: Photoactive materials made from Group IV semiconductor nanoparticles dispersed in an inorganic oxide matrix and methods for making the photoactive materials are provided. In some instances, the nanoparticles are functionalized with organosilanes to provide nanoparticle-organosilane compounds. The photoactive materials may be formed by subjecting the nanoparticles or nanoparticle compounds to a sol-gel process. The photoactive materials are well-suited for use in devices which convert electromagnetic radiation into electrical energy, including photovoltaic devices, photoconductors, and photodetectors.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: May 17, 2011
    Assignee: Innovalight, Inc.
    Inventors: Sanjai Sinha, Elena Rogojina
  • Publication number: 20110088759
    Abstract: Fullerene-capped Group IV nanoparticles, materials and devices made from the nanoparticles, and methods for making the nanoparticles are provided. The fullerene-capped Group IV nanoparticles have enhanced electron transporting properties and are well-suited for use in photovoltaic, electronics, and solid-state lighting applications.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Inventors: Elena Rogojina, David Jurbergs
  • Patent number: 7897489
    Abstract: A method of selectively attaching a capping agent to an H-passivated Si or Ge surface is disclosed. The method includes providing the H-passivated Si or Ge surface, the H-passivated Si or Ge surface including a set of covalently bonded Si or Ge atoms and a set of surface substitutional atoms, wherein the set of surface substitutional atoms includes at least one of boron atoms, aluminum atoms, gallium atoms, indium atoms, tin atoms, lead atoms, phosphorus atoms, arsenic atoms, sulfur atoms, and bismuth atoms. The method also includes exposing the set of surface functional atoms to a set of capping agents, each capping agent of the set of capping agents having a set of functional groups bonded to a pair of carbon atoms, wherein the pair of carbon atoms includes at least one pi orbital bond, and further wherein a covalent bond is formed between at least some surface substitutional atoms of the set of surface substitutional atoms and at least some capping agents of the set of capping agents.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 1, 2011
    Assignee: Innovalight, Inc.
    Inventor: Elena Rogojina
  • Publication number: 20110028000
    Abstract: A method for selectively etching a silicon-containing film on a silicon substrate is disclosed. The method includes depositing a silicon-containing film on the silicon substrate. The method further includes baking the silicon-containing film to create a densified silicon-containing film, wherein the densified film has a first thickness. The method also includes exposing the silicon substrate to an aqueous solution comprising NH4F and HF in a ratio of between about 6:1 and about 100:1, at a temperature of between about 20° C. and about 50° C., and for a time period of between about 30 seconds and about 5 minutes; wherein between about 55% and about 95% of the densified silicon-containing film is removed.
    Type: Application
    Filed: September 24, 2010
    Publication date: February 3, 2011
    Inventors: Elena Rogojina, Eric Rosenfeld, Dmitry Poplavskyy
  • Publication number: 20110003466
    Abstract: A method of forming a multi-doped junction on a substrate is disclosed. The method includes providing the substrate doped with boron atoms, the substrate comprising a front crystalline substrate surface; and forming a mask on the front crystalline substrate surface, the mask comprising exposed mask areas and non-exposed mask areas. The method also includes exposing the mask to an etchant, wherein porous silicon is formed on the front crystalline substrate surface defined by the exposed mask areas; and removing the mask. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3 gas, at a first temperature and for a first time period, wherein a PSG layer is formed on the front substrate surface; and heating the substrate in a drive-in ambient to a second temperature and for a second time period.
    Type: Application
    Filed: June 4, 2010
    Publication date: January 6, 2011
    Inventors: Giuseppe Scardera, Homer Antoniadis, Nick Cravalho, Maxim Kelman, Elena Rogojina, Karel Vanheusden
  • Publication number: 20100167510
    Abstract: A method of forming a multi-doped junction is disclosed. The method includes providing a first substrate and a second substrate. The method also includes depositing a first ink on a first surface of each of the first substrate and the second substrate, the first ink comprising a first set of nanoparticles and a first set of solvents, the first set of nanoparticles comprising a first concentration of a first dopant. The method further includes depositing a second ink on a second surface of each of the first substrate and the second substrate, the second ink comprising a second set of nanoparticles and a second set of solvents, the second set of nanoparticles comprising a second concentration of a second dopant. The method also includes placing the first substrate and the second substrate in a back to back configuration; and heating the first substrate and the second substrate in a first drive-in ambient to a first temperature and for a first time period.
    Type: Application
    Filed: November 25, 2009
    Publication date: July 1, 2010
    Inventors: Maxim Kelman, Michael Burrows, Dmitry Poplavskyy, Giuseppe Scardera, Daniel Kray, Elena Rogojina
  • Publication number: 20100139744
    Abstract: Fullerene-capped Group IV nanoparticles, materials and devices made from the nanoparticles, and methods for making the nanoparticles are provided. The fullerene-capped Group IV nanoparticles have enhanced electron transporting properties and are well-suited for use in photovoltaic, electronics, and solid-state lighting applications.
    Type: Application
    Filed: August 24, 2007
    Publication date: June 10, 2010
    Inventors: Elena Rogojina, David Jurbergs
  • Publication number: 20090311875
    Abstract: A method of selectively attaching a capping agent to an H-passivated Si or Ge surface is disclosed. The method includes providing the H-passivated Si or Ge surface, the H-passivated Si or Ge surface including a set of covalently bonded Si or Ge atoms and a set of surface substitutional atoms, wherein the set of surface substitutional atoms includes at least one of boron atoms, aluminum atoms, gallium atoms, indium atoms, tin atoms, lead atoms, phosphorus atoms, arsenic atoms, sulfur atoms, and bismuth atoms. The method also includes exposing the set of surface functional atoms to a set of capping agents, each capping agent of the set of capping agents having a set of functional groups bonded to a pair of carbon atoms, wherein the pair of carbon atoms includes at least one pi orbital bond, and further wherein a covalent bond is formed between at least some surface substitutional atoms of the set of surface substitutional atoms and at least some capping agents of the set of capping agents.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Inventor: Elena Rogojina
  • Publication number: 20090044661
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 19, 2009
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Publication number: 20090014423
    Abstract: The present invention provides a radiofrequency plasma apparatus for the production of nanoparticles and method for producing nanoparticles using the apparatus. The apparatus is designed to provide high throughput and makes the continuous production of bulk quantities of high-quality crystalline nanoparticles possible. The electrode assembly of the plasma apparatus includes an outer electrode and a central electrode arranged in a concentric relationship to define an annular flow channel between the electrodes.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Inventors: Xuegeng Li, Maxim Kelman, Mason Terry, Elena Rogojina, Eric Schiff, Karel Vanheusden
  • Publication number: 20080220175
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 11, 2008
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Publication number: 20080191193
    Abstract: A method for creating an organically capped Group IV semiconductor nanoparticle is disclosed. The method includes flowing a Group IV semiconductor precursor gas into a chamber. The method also includes generating a set of Group IV semiconductor precursor radical species from the Group IV semiconductor precursor gas with a laser pyrolysis apparatus, wherein the set of the Group IV semiconductor precursor radical species nucleate to form the Group IV semiconductor nanoparticle; and flowing an organic capping agent precursor gas into the chamber. The method further includes generating a set of organic capping agent radical species from the organic capping agent precursor gas, wherein the set of organic capping agent radical species reacts with a surface of the Group IV semiconductor nanoparticle and forms the organically capped Group IV semiconductor nanoparticle.
    Type: Application
    Filed: December 31, 2007
    Publication date: August 14, 2008
    Inventors: Xuegeng Li, Elena Rogojina, David Jurbergs, Damian Aherne
  • Publication number: 20080017242
    Abstract: Photoactive materials made from Group IV semiconductor nanoparticles dispersed in an inorganic oxide matrix and methods for making the photoactive materials are provided. In some instances, the nanoparticles are functionalized with organosilanes to provide nanoparticle-organosilane compounds. The photoactive materials may be formed by subjecting the nanoparticles or nanoparticle compounds to a sol-gel process. The photoactive materials are well-suited for use in devices which convert electromagnetic radiation into electrical energy, including photovoltaic devices, photoconductors, and photodetectors.
    Type: Application
    Filed: April 20, 2007
    Publication date: January 24, 2008
    Inventors: Sanjai Sinha, Elena Rogojina