Patents by Inventor Elena Timofeeva

Elena Timofeeva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170369372
    Abstract: The present invention is directed to a reinforced building block made of autoclaved aerated concrete (AAC) comprising rebars formed essentially from A) at least one fibrous carrier and B) and a hardened composition formed from B1) at least one epoxy compound and B2) at least one diamine and/or polyamine in a stoichiometric ratio of the epoxy compound B1) to the diamine and/or polyamine component B2) of 0.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 28, 2017
    Inventors: Dirk Fuchsmann, Michael Vogel, Vladislav Yaroslavskiy, Elena Timofeeva, Wladimir Richter
  • Patent number: 9533352
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: January 3, 2017
    Assignee: UChicago Argonne, LLC
    Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules L. Routbort
  • Patent number: 9340720
    Abstract: A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 17, 2016
    Assignee: UChicago Argonne, LLC
    Inventors: Dileep Singh, Jules Routbort, A.J. Routbort, Wenhua Yu, Elena Timofeeva, David S. Smith, David M. France
  • Publication number: 20160059306
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Application
    Filed: November 3, 2015
    Publication date: March 3, 2016
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules L. Routbort
  • Patent number: 9187806
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: November 17, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules L. Routbort
  • Publication number: 20150280240
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Application
    Filed: June 16, 2015
    Publication date: October 1, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Dileep Singh, Yusef Yusufoglu, Elena Timofeeva, Jules L. Routbort
  • Patent number: 9079249
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 14, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules Routbort
  • Publication number: 20130084502
    Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules Routbort
  • Publication number: 20110001081
    Abstract: A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 6, 2011
    Inventors: Dileep SINGH, Jules Routbort, Wenhua Yu, Elena Timofeeva, David S. Smith, David M. France, Alexander Heifetz