Patents by Inventor Eli Hughes

Eli Hughes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7556388
    Abstract: A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: July 7, 2009
    Assignee: QorTek, Inc.
    Inventors: Gareth J. Knowles, Eli Hughes
  • Publication number: 20090027788
    Abstract: A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Application
    Filed: August 19, 2008
    Publication date: January 29, 2009
    Applicant: QORTEK, INC.
    Inventors: Gareth J. Knowles, Eli Hughes
  • Patent number: 7429113
    Abstract: A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: September 30, 2008
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20080007851
    Abstract: A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Application
    Filed: September 10, 2007
    Publication date: January 10, 2008
    Inventors: Gareth Knowles, Eli Hughes
  • Patent number: 7281808
    Abstract: A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: October 16, 2007
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20070171058
    Abstract: A flooring system comprising a plurality of electrode pairs in contact with a metaplastic composite material. The metaplastic material is such that it locally conducts electrical current in an area where any load is applied to the metaplastic. An electric potential is applied to one or more interdigitated electrodes located at a face of the metaplastic material in line with applied loads. Larger area coverage can be obtained either by pre-installing a subsurface layer comprising of an array of interdigitated electrodes and their trace line outputs and then covering this layer with a tiling of metaplastic material sheets that is in direct contact with the array of interdigitated electrodes, or, by directly attaching one or more interdigitated electrodes and their output trace lines to an individual sections of metaplastic material and electrically interconnecting their outputs.
    Type: Application
    Filed: August 2, 2006
    Publication date: July 26, 2007
    Inventors: Gareth Knowles, Eli Hughes
  • Patent number: 7154813
    Abstract: A sensor with sound navigation and ranging applications is presented. The invention includes a pressure conduction composite sandwiched between electrically conductive elements so as to sense pressure associated with an acoustic wave via a change in conductance within the composite. One electrically conductive element is rigid and includes the hull of a vessel or wall of a sea-based device. The pressure conduction composite is composed of a non-conductive matrix having a conductive fill at or near the percolation threshold of the material system. The pressure conduction composite is highly resistive in its uncompressed state. However, resistance decreases with increasing compression. In preferred embodiments, sensors are arranged in an array architecture including planar and conformal configurations. The present invention has immediate application in submarines, ships, and sonobuoys.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 26, 2006
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Eli Hughes
  • Patent number: 7151506
    Abstract: The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: December 19, 2006
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Eli Hughes
  • Patent number: 7080562
    Abstract: A high-sensitivity pressure conduction sensor is presented. The present invention includes a pair of locally resilient conductive layers and a locally resilient pressure conduction composite disposed between and contacting both conductive layers. Alternate embodiments include at least three locally resilient conductive layers and at least two locally resilient pressure conduction composites, each having a critical percolation threshold. Each composite is disposed between and contacting two conductive layers in a multi-layer fashion. Other embodiments include a locally resilient pressure conduction composite, a flexible substrate completely surrounding the composite so as to seal it therein, and a pair of electrical leads contacting the composite and terminating outside of the flexible substrate. Pressure conduction composites are composed of a plurality of conductive particles electrically isolated within a non-conductive matrix.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 25, 2006
    Assignee: QorTek, Inc.
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20060002235
    Abstract: A sensor with sound navigation and ranging applications is presented. The invention includes a pressure conduction composite sandwiched between electrically conductive elements so as to sense pressure associated with an acoustic wave via a change in conductance of the composite. One electrically conductive element is rigid and may include the hull of a vessel or wall of a sea-based device. The pressure conduction composite is composed of a non-conductive matrix having a conductive fill at or near the percolation threshold of the material system. The pressure conduction composite is highly resistive in its uncompressed state. However, resistance decreases with increasing compression. In preferred embodiments, sensors are arranged in an array architecture including planar or conformal configurations.
    Type: Application
    Filed: July 19, 2004
    Publication date: January 5, 2006
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20050081640
    Abstract: A high-sensitivity pressure conduction sensor is presented. The present invention includes a pair of locally resilient conductive layers and a locally resilient pressure conduction composite disposed between and contacting both conductive layers. Alternate embodiments include at least three locally resilient conductive layers and at least two locally resilient pressure conduction composites, each having a critical percolation threshold. Each composite is disposed between and contacting two conductive layers in a multi-layer fashion. Other embodiments include a locally resilient pressure conduction composite, a flexible substrate completely surrounding the composite so as to seal it therein, and a pair of electrical leads contacting the composite and terminating outside of the flexible substrate. Pressure conduction composites are composed of a plurality of conductive particles electrically isolated within a non-conductive matrix.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 21, 2005
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20050002087
    Abstract: A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
    Type: Application
    Filed: June 21, 2004
    Publication date: January 6, 2005
    Inventors: Gareth Knowles, Eli Hughes
  • Publication number: 20040201526
    Abstract: The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
    Type: Application
    Filed: April 12, 2004
    Publication date: October 14, 2004
    Inventors: Gareth Knowles, Eli Hughes