Patents by Inventor Eli Zehavi

Eli Zehavi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9814535
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 14, 2017
    Assignee: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Isidore Lieberman, Moshe Shoham
  • Patent number: 9713499
    Abstract: A robotic surgical system incorporating a surgical robot attached to a patient's bone by an attachment member, such that motion of the bone induces corresponding motion of the robot, maintaining the robot/bone positional relationship. The robot is supported on a mechanical mounting member attached through a controlled joint to a bed-mounted base element. The controlled joint can alternatively enable the mechanical mounting member to move freely relative to the base element, or its position can be controlled by signal inputs adapted to prevent excessive force being applied in the system. Two modes of operation are available (i) free motion in which the control system is decoupled from the mounting member, which rides freely with patient bone motion, and (ii) servo-controlled motion, in which drive mechanisms control the joint motion to prevent application of excessive force on the patient bone or attachment member.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 25, 2017
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Yossef Bar, Eli Zehavi, Moshe Shoham, David Groberman
  • Publication number: 20170071682
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Application
    Filed: November 8, 2016
    Publication date: March 16, 2017
    Inventors: Yossef BAR, Eli ZEHAVI, Isidore LIEBERMAN, Moshe SHOHAM
  • Patent number: 9545233
    Abstract: A method verifying the position of a surgically inserted orthopedic insert. A preoperative three dimensional image data set of the surgical site is generated, showing the bone into which the insert is to be inserted. During the insertion procedure, a series of intraoperative two-dimensional fluoroscope images are generated, each at a known pose relative to the bone, showing the insert during or after insertion into the bone. The 3-D position of the insert is determined in an intraoperative three dimensional image data set reconstructed from the series of intraoperative 2-D fluoroscope images. The reconstructed intraoperative 3-D image data set is registered with the preoperative three dimensional image data set, such as by comparison of imaged anatomical features. Once this registration is achieved, the determined 3-D position of the insert is used to implant a virtual image of the insert into the preoperative three dimensional image data set.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: January 17, 2017
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Yael Sirpad, Eli Zehavi, Moshe Shoham, Leonid Kleyman
  • Patent number: 9492241
    Abstract: A novel image-guided system for precise automatic targeting in minimally invasive keyhole neurosurgery. The system consists of a miniature robot fitted with a mechanical guide for needle, probe, or catheter insertion. Intraoperative, the robot is directly affixed to a head clamp or to the patient skull. It automatically positions itself with respect to predefined entry points and targets in a preoperative CT/MRI image following an anatomical registration with an intraoperative 3D surface scan of the patient facial features and a registration jig. The registration procedure is a novel three-way scheme, in which the intraoperative surface scan including the registration jig is matched to a model generated from the preoperative CT/MRI image, the robot position is known in relation to the registration jig, and the entry and target points are known from the preoperative CT/MRI image, such that the robot position can be related to the entry and target points.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: November 15, 2016
    Assignee: Mazor Robotics Ltd.
    Inventors: Leo Joskowicz, Moshe Shoham, Reuven Shamir, Moti Freiman, Eli Zehavi, Yigal Shoshan
  • Patent number: 9125556
    Abstract: Systems and methods for performing robotic endoscopic surgical procedures, according to a surgical plan prepared on a preoperative set of three dimensional images. The system comprises a surgical robot whose coordinate system is related to that of fluoroscope images generated intraoperatively, by using a three dimensional target having radio-opaque markers, attached in a predetermined manner to the robot or to another element to which the robot is attached, such as the spinal bridge or an attachment clamp. The robot is mounted directly or indirectly on a bone of the patient, thereby nullifying movement of the bone, or a bone tracking system may be utilized. The coordinate system of the intraoperative fluoroscope images may be related to the preoperative images, by comparing anatomical features between both image sets. This system and method enables the endoscope to be directed by the robot along the exact planned path, as determined by the surgeon.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: September 8, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20150209056
    Abstract: Methods and apparatus for detecting or predicting surgical tool-bone skiving are disclosed. In some embodiments, the surgical tool is movably and/or snugly disposed within a guide-sleeve. In some embodiments, a magnitude of a lateral force between the surgical tool and the guide-sleeve is measured (e.g. by a force sensor or strain sensor). The present or future skiving may be detected or predicted according to the magnitude of the lateral force. In some embodiments, an alert signal is generated in response to the detecting or predicting of the skiving.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 30, 2015
    Inventors: Moshe SHOHAM, Eli ZEHAVI
  • Publication number: 20150196326
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 16, 2015
    Inventors: Yossef BAR, Eli ZEHAVI, Isidore LIEBERMAN, Moshe SHOHAM
  • Patent number: 9056015
    Abstract: A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: June 16, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20150150523
    Abstract: A method verifying the position of a surgically inserted orthopedic insert. A preoperative three dimensional image data set of the surgical site is generated, showing the bone into which the insert is to be inserted. During the insertion procedure, a series of intraoperative two-dimensional fluoroscope images are generated, each at a known pose relative to the bone, showing the insert during or after insertion into the bone. The 3-D position of the insert is determined in an intraoperative three dimensional image data set reconstructed from the series of intraoperative 2-D fluoroscope images. The reconstructed intraoperative 3-D image data set is registered with the preoperative three dimensional image data set, such as by comparison of imaged anatomical features. Once this registration is achieved, the determined 3-D position of the insert is used to implant a virtual image of the insert into the preoperative three dimensional image data set.
    Type: Application
    Filed: May 21, 2013
    Publication date: June 4, 2015
    Inventors: Yael Sirpad, Eli Zehavi, Moshe Shoham, Leonid Kleyman
  • Patent number: 9044190
    Abstract: A system and method for generating CT-type three dimensional imaging information from a conventional C-arm fluoroscope system. This enables the adaptation of widely used C-arm installations to provide CT-type information. The system uses a three dimensional target disposing in a fixed position relative to the subject, and obtains a sequence of video images of a region of interest of a subject while the C-arm is moved manually or by a scanning motor. Images from the video sequence are analyzed to determine the pose of the C-arm relative to the subject by analysis of the image patterns of the target. Images are selected from the video sequence according to predetermined criteria. A set of two-dimensional image data with associated positional data is obtained, which is used to reconstruct a three dimensional volumetric set of imaging data of the region of interest of the subject.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 2, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Joseph Rubner, Eli Zehavi, Leonid Kleyman, Moshe Shoham
  • Patent number: 8992580
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 31, 2015
    Assignee: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Isador Lieberman, Moshe Shoham
  • Publication number: 20140316436
    Abstract: A robotic surgical system incorporating a surgical robot attached to a patient's bone by an attachment member, such that motion of the bone induces corresponding motion of the robot, maintaining the robot/bone positional relationship. The robot is supported on a mechanical mounting member attached through a controlled joint to a bed-mounted base element. The controlled joint can alternatively enable the mechanical mounting member to move freely relative to the base element, or its position can be controlled by signal inputs adapted to prevent excessive force being applied in the system. Two modes of operation are available (i) free motion in which the control system is decoupled from the mounting member, which rides freely with patient bone motion, and (ii) servo-controlled motion, in which drive mechanisms control the joint motion to prevent application of excessive force on the patient bone or attachment member.
    Type: Application
    Filed: December 5, 2012
    Publication date: October 23, 2014
    Applicant: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Moshe Shoham, David Groberman
  • Publication number: 20130303883
    Abstract: Systems and methods for performing robotic endoscopic surgical procedures, according to a surgical plan prepared on a preoperative set of three dimensional images. The system comprises a surgical robot whose coordinate system is related to that of fluoroscope images generated intraoperatively, by using a three dimensional target having radio-opaque markers, attached in a predetermined manner to the robot or to another element to which the robot is attached, such as the spinal bridge or an attachment clamp. The robot is mounted directly or indirectly on a bone of the patient, thereby nullifying movement of the bone, or a bone tracking system may be utilized. The coordinate system of the intraoperative fluoroscope images may be related to the preoperative images, by comparing anatomical features between both image sets. This system and method enables the endoscope to be directed by the robot along the exact planned path, as determined by the surgeon.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 14, 2013
    Inventors: ELI ZEHAVI, MOSHE SHOHAM
  • Patent number: 8394144
    Abstract: A tracking and positioning system and method to enable the precise positioning of an object or tool relative to its surgical surroundings, and in accordance with preoperative CT images of the operating site. When used for artificial spinal disc positioning, the system comprises a computing system incorporating in memory the preoperative CT data showing the two vertebrae and the predetermined disc position between them; a 3-D target having radio-opaque markers for attaching to one of the vertebrae to define the position of the vertebra in an intra-operative fluoroscope image of the spine; a tool for intra-operative insertion of the artificial disc, and a registration system for relating the intra-operative fluoroscope image to the preoperative CT data, such that the predetermined disc position is displayed in the fluoroscope image of the subject, thereby enabling the surgeon to place the artificial disc accurately in its intended position.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 12, 2013
    Assignee: Mazor Surgical Technologies Ltd.
    Inventors: Eli Zehavi, Leonid Kleyman, Eddie Batkilin
  • Patent number: 8335553
    Abstract: A system and method for generating three dimensional CT-type information from a conventional C-arm fluoroscope imaging system. A small number of fluoroscope images are used, taken from angles whose pose is determined by means of a three-dimensional target attached to the region of interest, aided by the participation of the surgeon or an image processing routine to pinpoint known anatomical features in the region of interest of the patient. This procedure enables the reconstruction of virtual images in any desired plane, even in planes other than those accessible by the C-arm imaging process, such as the axial plane of a vertebra. Use of this system and method of marking of the feature to be treated in a small number of angularly dissimilar images, enables the generation of CT-type information which can be used to accurately align a robotically guided surgical tool with the anatomical feature.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: December 18, 2012
    Assignee: Mazor Robotics Ltd.
    Inventors: Joseph Rubner, Eli Zehavi, Leonid Kleyman
  • Patent number: 8328852
    Abstract: A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
    Type: Grant
    Filed: March 15, 2009
    Date of Patent: December 11, 2012
    Assignee: Mazor Robotics Ltd.
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20110276095
    Abstract: An orthopedic screw having a thread with two parts, a distal and a proximal part, each having a different thread configuration. The distal section has a thread with outer dimension and pitch suitable for entry into cancellous bone, while the proximal section has a composite thread comprising (i) a first thread of the same or slightly larger outer diameter as the cancellous thread in the distal section, having the same pitch thereof, and lying on the same helix, and (ii) another thread having a smaller outer diameter but the same pitch as the first thread, but disposed on a helix displaced from that of the first thread, such that it lies between the crests of the first thread. This screw enables optimum fixation strength in a bone or bones having a harder cortical outer section and a softer cancellous inner section. The screw may have an unthreaded central section.
    Type: Application
    Filed: December 9, 2009
    Publication date: November 10, 2011
    Inventors: Yossef Bar, Eli Zehavi, Brian Hewko, Moshe Shoham
  • Publication number: 20110054538
    Abstract: A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
    Type: Application
    Filed: March 15, 2009
    Publication date: March 3, 2011
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20100284601
    Abstract: A system and method for generating CT-type three dimensional imaging information from a conventional C-arm fluoroscope system. This enables the adaptation of widely used C-arm installations to provide CT-type information. The system uses a three dimensional target disposing in a fixed position relative to the subject, and obtains a sequence of video images of a region of interest of a subject while the C-arm is moved manually or by a scanning motor. Images from the video sequence are analyzed to determine the pose of the C-arm relative to the subject by analysis of the image patterns of the target. Images are selected from the video sequence according to predetermined criteria. A set of two-dimensional image data with associated positional data is obtained, which is used to reconstruct a three dimensional volumetric set of imaging data of the region of interest of the subject.
    Type: Application
    Filed: September 25, 2007
    Publication date: November 11, 2010
    Applicant: Mazor Surgical Technologies, Ltd.
    Inventors: Joseph Rubner, Eli Zehavi, Leonid Kleyman, Moshe Shoham