Patents by Inventor Eliane Wauthier

Eliane Wauthier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932877
    Abstract: The present disclosure provides a model of human fibrolamellar hepatocellular carcinoma (FL-HCC) cells maintained as a transplantable tumor line in a host and a method to establish a transplantable human FL-HCC tumor line. Methods of ex vivo cultures of the FL-HCC are provided. Methods of diagnosing and treating FL-HCC tumors are also provided.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 19, 2024
    Assignee: University of North Carolina at Chapel Hill
    Inventors: Eliane Wauthier, Tsunekazu Oikawa, Timothy Anh-Hieu Dinh, Praveen Sethupathy, Lola M. Reid
  • Publication number: 20240082461
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: August 28, 2023
    Publication date: March 14, 2024
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Patent number: 11738117
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 29, 2023
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20220347350
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Patent number: 11446412
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 20, 2022
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20220211911
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: August 10, 2021
    Publication date: July 7, 2022
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. REID, Wencheng Zhang, Eliane Wauthier
  • Patent number: 11129923
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: September 28, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20190388584
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, containing the donor cells. The donor cells may be a mixture of stem cells/progenitors with supporting early lineage stage mesenchymal cells. The patch graft promotes migration of the donor cells into the host organ and supports the successful integration of donor cells with host cells to repair the diseased organ.
    Type: Application
    Filed: May 24, 2019
    Publication date: December 26, 2019
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20190161735
    Abstract: The present disclosure provides a model of human fibrolamellar hepatocellular carcinoma (FL-HCC) cells maintained as a transplantable tumor line in a host and a method to establish a transplantable human FL-HCC tumor line. Methods of ex vivo cultures of the FL-HCC are provided. Methods of diagnosing and treating FL-HCC tumors are also provided.
    Type: Application
    Filed: June 18, 2018
    Publication date: May 30, 2019
    Applicant: University of North Carolina at Chapel Hill
    Inventors: Eliane Wauthier, Tsunekazu OIKAWA, Timothy Anh-Hieu DINH, Praveen SETHUPATHY, Lola M. REID
  • Publication number: 20190015556
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: January 17, 2019
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20180361028
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 20, 2018
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20180361027
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 20, 2018
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20180353653
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20180353651
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20180353652
    Abstract: Compositions and methods of transplanting cells by grafting strategies into solid organs (especially internal organs) are provided. These methods and compositions can be used to repair diseased organs or to establish models of disease states in experimental hosts. The method involves attachment onto the surface of a tissue or organ, a patch graft, a “bandaid-like” covering, containing epithelial cells with supporting early lineage stage mesenchymal cells. The cells are incorporated into soft gel-forming biomaterials prepared under serum-free, defined conditions comprised of nutrients, lipids, vitamins, and regulatory signals that collectively support stemness of the donor cells. The graft is covered with a biodegradable, biocompatible, bioresorbable backing used to affix the graft to the target site. The cells in the graft migrate into and throughout the tissue such that within a couple of weeks they are uniformly dispersed within the recipient (host) tissue.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Wencheng Zhang, Eliane Wauthier
  • Publication number: 20160257937
    Abstract: The present disclosure provides a model of human fibrolamellar hepatocellular carcinoma (FL-HCC) cells maintained as a transplantable tumor line in a host and a method to establish a transplantable human FL-HCC tumor line. Methods of ex vivo cultures of the FL-HCC are provided. Methods of diagnosing and treating FL-HCC tumors are also provided.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Applicant: University of North Carolina at Chapel Hill
    Inventors: Eliane WAUTHIER, Tsunekazu OIKAWA, Timothy Anh-Hieu DINH, Praveen SETHUPATHY, Lola M. REID
  • Patent number: 8404483
    Abstract: A method is provided for controlling the survival, proliferation, and/or differentiation of hepatic progenitors in vitro by using specific types of mesenchymal feeder cells or one of more of the paracrine signals produced by those feeders.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: March 26, 2013
    Assignee: University of North Carolina at Chapel Hill
    Inventors: Lola M. Reid, Randall E. McClelland, Joshua Uronis, Hsin-Lei Yao, Eliane Wauthier
  • Publication number: 20110065188
    Abstract: A method is provided for controlling the survival, proliferation, and/or differentiation of hepatic progenitors in vitro by using specific types of mesenchymal feeder cells or one of more of the paracrine signals produced by those feeders.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 17, 2011
    Inventors: Lola M. Reid, Randall E. Mcclelland, Joshua Uronis, Hsin-Lei Yao, Eliane Wauthier
  • Publication number: 20080318316
    Abstract: A method is provided for controlling the survival, proliferation, and/or differentiation of hepatic progenitors in vitro by using specific types of mesenchymal feeder cells or one of more of the paracrine signals produced by those feeders.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 25, 2008
    Inventors: Lola M. Reid, Randall E. McClelland, Joshua Uronis, Hsin-Lei Yao, Eliane Wauthier