Patents by Inventor Elias H. Camara

Elias H. Camara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6984372
    Abstract: This invention relates to a sulfur tolerant, dynamic, compact, lightweight fuel process and system that is capable of converting sulfur bearing carbonaceous fuels to hydrogen rich gases suitable for fuel cells or chemical processing applications. The process and system is based on the AHR and WGS reactions, followed by cleanup of byproduct sulfur-containing gases and carbon oxides that would otherwise poison the fuel cell electrocatalyst. Advantageously, this is accomplished via an ASMS and a methanator or an AWMR. The process and system preferably uses a special sulfur tolerant catalysts and hardware designs that enable the conversion in an energy efficient manner while maintaining desirable performance characteristics such as rapid start-stop and fast response to load change capabilities.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: January 10, 2006
    Assignees: Unitel Technologies, Inc., University of Kentucky Research Foundation
    Inventors: Surjit Randhava, W. S. Winston Ho, Richard L. Kao, Elias H. Camara
  • Publication number: 20040047799
    Abstract: This invention relates to a sulfur tolerant, dynamic, compact, lightweight fuel process and system that is capable of converting sulfur bearing carbonaceous fuels to hydrogen rich gases suitable for fuel cells or chemical processing applications. The process and system is based on the AHR and WGS reactions, followed by cleanup of byproduct sulfur-containing gases and carbon oxides that would otherwise poison the fuel cell electrocatalyst. Advantageously, this is accomplished via an ASMS and a methanator or an AWMR. The process and system preferably uses a special sulfur tolerant catalysts and hardware designs that enable the conversion in an energy efficient manner while maintaining desirable performance characteristics such as rapid start-stop and fast response to load change capabilities.
    Type: Application
    Filed: September 6, 2002
    Publication date: March 11, 2004
    Applicants: H2fuel, LLC, University of Kentucky Research Foundation
    Inventors: Surjit Randhava, W.S. Winston Ho, Richard L. Kao, Elias H. Camara
  • Publication number: 20030188475
    Abstract: A dynamic, compact, lightweight fuel processor that is capable of converting carbonaceous fuels to hydrogen rich gases suitable for all types of fuel cells or chemical processing applications. The fuel processor and process are based on the autothermal hydrodesulfurizing reforming reaction, followed by clean up of byproduct sulfur-containing gases and carbon monoxide that poison the fuel cell electrocatalyst. The fuel processor uses proprietary catalysts and hardware designs that enable the conversion in an energy efficient manner while maintaining desirable performance characteristics such as rapid start-stop and fast response to load change capabilities.
    Type: Application
    Filed: March 29, 2002
    Publication date: October 9, 2003
    Inventors: Shabbir Ahmed, Sheldon H. Lee, Steven G. Calderone, Richard L. Kao, Elias H. Camara, Steven A. Lottes, Michael Krumpelt, Todd L. Harvey
  • Patent number: 5399443
    Abstract: Electrolyte matrix structures for molten carbonate fuel cells which: have a fine, uniform, and controlled porosity; are stable under operating conditions; and readily meet acceptable performance levels. These structures or matrices are easily manufactured by a simple and scalable technique from a slip containing particulate LiAlO.sub.2 dispersed in an organic vehicle and an acrylic-based binder. The solvent is evaporated, leaving a flat, flexible, green structure. The green-structure is heated in a non-oxidizing atmosphere to thermally decompose and thereby remove the binder. This leaves a porous structure which is impregnated with molten carbonate by capillary action.
    Type: Grant
    Filed: April 22, 1994
    Date of Patent: March 21, 1995
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Estela T. Ong, Elias H. Camara
  • Patent number: 5306575
    Abstract: A fuel cell power plant and a process for operating a series of molten carbonate fuel cells in the fuel cell power plant are described. In the fuel cell power plant, cathode feed gas at required cathode feed temperature is introduced into the cathode inlet of the first fuel cell of the fuel cell series. The cathode exhaust gas from the first fuel cell and the cathode exhaust gas from the exhaust outlet of each successive fuel cell is introduced to the cathode inlet of the next fuel cell downstream thereof. The cathode feed temperature to the inlet of each fuel cell after the first fuel cell is maintained at the desired level by adding a reactant-containing gas to the cathode side exhaust between each pair of consecutive fuel cells in the series. The added reactant-containing gas is at a lower temperature than the cathode side exhaust to which it is added, whereby desired cathode feed temperature to the inlet of each successive fuel cell downstream of the first fuel cell is achieved.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: April 26, 1994
    Inventors: Elias H. Camara, Kenzo Nakazawa
  • Patent number: 5071718
    Abstract: A process for production of electricity in molten carbonate fuel cells using a sulfur contaminated fuel gas wherein anode polarization is reduced by use of a porous anode of greater than about 10 weight percent copper resulting in improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.
    Type: Grant
    Filed: June 29, 1990
    Date of Patent: December 10, 1991
    Assignee: Institute of Gas Technology
    Inventors: Leonard G. Marianowski, Gerald L. Anderson, Elias H. Camara
  • Patent number: 4160067
    Abstract: A high temperature molten carbonate fuel cell ferrous metal cell housing having about 2 to about 70 weight percent aluminum content in the cell housing surface wet seal area prior to cell operation providing corrosion inhibition during fuel cell operation.
    Type: Grant
    Filed: March 13, 1978
    Date of Patent: July 3, 1979
    Assignee: Institute of Gas Technology
    Inventors: Elias H. Camara, Leonard G. Marianowski, Rafael A. Donado