Patents by Inventor Elias J. Jeyarajah

Elias J. Jeyarajah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125719
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosample may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 18, 2024
    Applicant: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 11782002
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: October 10, 2023
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Publication number: 20220043086
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Publication number: 20220011388
    Abstract: Described herein are methods for the determination of patient mortality from alcoholic hepatitis in biosamples by NMR spectroscopy and more specifically for the determination of a Z index score based on lipoprotein constituent LP-Z in blood plasma and serum.
    Type: Application
    Filed: November 7, 2019
    Publication date: January 13, 2022
    Inventors: Zhenghui Gordon Jiang, James D. Otvos, Irina Shalaurova, Elias J. Jeyarajah, Margery A. Connelly, Michael Curry, Nezam Afdhal, Yury Popov, Maria Perez-Matos
  • Patent number: 11156685
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: October 26, 2021
    Assignee: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Publication number: 20200355634
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: March 9, 2020
    Publication date: November 12, 2020
    Applicant: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 10613044
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 7, 2020
    Assignee: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Publication number: 20190317165
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 17, 2019
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Patent number: 10365339
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: July 30, 2019
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Publication number: 20170293007
    Abstract: NMR analyzers and associated methods, circuits and computer program products that allow NMR operation in fluctuating ambient temperature environments of at least +/?5 degrees F. in a relatively large operating temperature range, typically between about 60-85 degrees F.) with the ability to still generate accurate quantitative measurements using an electronically applied temperature sensitivity adjustment based on an a priori model of temperature sensitivity and a detected temperature proximate the NMR signal acquisition (e.g., scan). The clinical NMR analyzers can be remotely accessed to evaluate linearity and temperature compensation adjustments.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 12, 2017
    Applicant: LipoScience, Inc.
    Inventors: David R. Morgan, Elias J. Jeyarajah
  • Publication number: 20170184521
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 29, 2017
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 9689942
    Abstract: NMR analyzers and associated methods, circuits and computer program products that allow NMR operation in fluctuating ambient temperature environments of at least +/?5 degrees F. in a relatively large operating temperature range, typically between about 60-85 degrees F.) with the ability to still generate accurate quantitative measurements using an electronically applied temperature sensitivity adjustment based on an a priori model of temperature sensitivity and a detected temperature proximate the NMR signal acquisition (e.g., scan). The clinical NMR analyzers can be remotely accessed to evaluate linearity and temperature compensation adjustments.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 27, 2017
    Assignee: LipoScience, Inc.
    Inventors: David R. Morgan, Elias J. Jeyarajah
  • Patent number: 9541620
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: January 10, 2017
    Assignee: LIPOSCIENCE, INC.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 9535144
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 3, 2017
    Assignee: LIPOSCIENCE, INC.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Stanley L. Hazan
  • Publication number: 20150149094
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: May 16, 2013
    Publication date: May 28, 2015
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus
  • Publication number: 20140184223
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Patent number: 8704521
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 22, 2014
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Publication number: 20130325353
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: March 13, 2013
    Publication date: December 5, 2013
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett
  • Publication number: 20130002250
    Abstract: NMR analyzers and associated methods, circuits and computer program products that allow NMR operation in fluctuating ambient temperature environments of at least +/?5 degrees F. in a relatively large operating temperature range, typically between about 60-85 degrees F.) with the ability to still generate accurate quantitative measurements using an electronically applied temperature sensitivity adjustment based on an a priori model of temperature sensitivity and a detected temperature proximate the NMR signal acquisition (e.g., scan). The clinical NMR analyzers can be remotely accessed to evaluate linearity and temperature compensation adjustments.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Inventors: David R. Morgan, Elias J. Jeyarajah
  • Publication number: 20110295517
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel