Patents by Inventor Elias Quijano

Elias Quijano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872286
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: January 16, 2024
    Assignee: Yale University
    Inventors: Elias Quijano, Peter Glazer
  • Patent number: 11850284
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: December 26, 2023
    Assignee: Yale University
    Inventors: Elias Quijano, Peter Glazer
  • Publication number: 20230303719
    Abstract: The disclosure provides humanized 3E10 antibodies and antigen binding fragments thereof. Compositions and methods of using the humanized 3E10 antibodies and antigen binding fragments thereof to deliver cargo are also disclosed.
    Type: Application
    Filed: March 2, 2023
    Publication date: September 28, 2023
    Inventors: Elias Quijano, Peter Glazer, Stephen Squinto, Dale Ludwig
  • Patent number: 11766400
    Abstract: Biodegradable contraceptive implants and methods of making and using thereof, are preferably formed of poly(?-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)], a family of polyester copolymers that degrade slowly in the presence of water. The material is suitable as the basis of a biodegradable contraceptive implant that provides sustained release of a progestin at a rate similar to a commercially available nondegradable implant. In a preferred embodiment, the progestin is levonorgestrel (LNG), a hormone that prevents pregnancy by preventing the release of an egg from the ovary or by preventing fertilization of the egg by sperm. The implant may be inserted subcutaneously, allowing degradation over a period of up to about 18 or 24 months, eliminating the need for removal by a trained practitioner.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 26, 2023
    Assignees: YALE UNIVERSITY, FAMILY HEALTH INTERNATIONAL
    Inventors: W. Mark Saltzman, Elias Quijano, Fan Yang, Zhaozhong Jiang, Derek Owen
  • Publication number: 20230277658
    Abstract: Compositions for improved gene editing and methods of use thereof are disclosed. In a preferred method, gene editing involves use of a cell-penetrating anti-DNA antibody, such as 3E10, as a potentiating agent to enhance gene editing by nucleases and triplex forming oligonucleotides. Genomic modification occurs at a higher frequency when cells are contacted with the potentiating agent and nuclease or triplex forming oligonucleotide, as compared to the absence of the potentiating agent. The methods are suitable for both ex vivo and in vivo approaches to gene editing and are useful for treating a subject with a genetic disease or disorder. Nanoparticle compositions for intracellular delivery of the gene editing compositions are provided and are particularly advantageous for use with in vivo applications.
    Type: Application
    Filed: November 9, 2022
    Publication date: September 7, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Adele RICCIARDI, Raman BAHAL, Audrey TURCHICK, Nicholas ECONOMOS, W. Mark SALTZMAN, Peter GLAZER
  • Publication number: 20230272115
    Abstract: Compositions for enhanced gene editing and methods of use thereof are. The composition contains a cell-penetrating antibody and a donor oligonucleotide containing a sequence that can correct a mutation in a cell's genome. Preferably, the composition does not contain a nuclease, PNA, or nanoparticle. The compositions are used to modify the genome of a cell by contacting the cell with an effective amount of the composition. Genomic modification occurs at a higher frequency both ex vivo and in vivo, when cells are contacted with the cell-penetrating antibody and donor oligonucleotide as compared to the absence of the cell-penetrating antibody.
    Type: Application
    Filed: November 9, 2022
    Publication date: August 31, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Audrey TURCHICK, Peter GLAZER
  • Publication number: 20230265214
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 31, 2021
    Publication date: August 24, 2023
    Inventors: Elias Quijano, Peter Glazer, Bruce C. Turner, Audrey Turchick, W. Mark Saltzman
  • Publication number: 20230227583
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 31, 2020
    Publication date: July 20, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Peter GLAZER
  • Publication number: 20230093888
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 30, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Peter GLAZER
  • Publication number: 20230093460
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 23, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Peter GLAZER
  • Publication number: 20230085308
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 16, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Peter GLAZER
  • Publication number: 20230032060
    Abstract: Compositions and methods of use thereof for delivering nucleic acid cargo into cells are provided. The compositions typically include (a) a 3E10 monoclonal antibody or an antigen binding, cell-penetrating fragment thereof; a monovalent, divalent, or multivalent single chain variable fragment (scFv); or a diabody; or humanized form or variant thereof, and (b) a nucleic acid cargo including, for example, a nucleic acid encoding a polypeptide, a functional nucleic acid, a nucleic acid encoding a functional nucleic acid, or a combination thereof. Elements (a) and (b) are typically non-covalently linked to form a complex.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 2, 2023
    Applicant: Yale University
    Inventors: Elias QUIJANO, Peter GLAZER
  • Publication number: 20220372474
    Abstract: Peptide nucleic acid (PNA) oligomers having one or more hydroxymethyl ?-substitutions, also referred to herein as “ser?PNA”, are provided. The hydroxymethyl ?-substitution preserves and amplifies the helical preorganization that is valuable for DNA duplex invasion by the oligomer. ser?PNA-containing triplex-forming molecules can be used in combination with a donor DNA fragment to facilitate genome modification in vitro and in vivo.
    Type: Application
    Filed: June 22, 2020
    Publication date: November 24, 2022
    Inventors: Elias Quijano, Stanley Oyaghire, W. Mark Saltzman, Peter Glazer
  • Publication number: 20220339294
    Abstract: Compositions containing populations of nanoparticles that show selective uptake by tissues and other cell types such as lung cells and/or bone marrow cells are described. The nanoparticles show this uptake by virtue of their size and in the absence of a targeting agent on the surface of the nanoparticles, i.e., passive targeting. The population of nanoparticles contain poly(lactic acid-co-glycolic acid), have a diameter between about 70 nm and about 220 nm, and at least 90% of the nanoparticles have a diameter between about 110 nm and about 129 nm. The nanoparticles are manufactured using a microfluidic system. The compositions can be used to treat lung- and/or blood-related genetic disorders in in vivo gene editing technologies.
    Type: Application
    Filed: September 9, 2020
    Publication date: October 27, 2022
    Inventors: Hanna Mandl, Elias Quijano, W. Mark Saltzman, Peter Glazer
  • Publication number: 20220280656
    Abstract: Peptide nucleic acid (PNA) oligomers that target the ?-globin gene and can increase the frequency of recombination of donor oligonucleotide at the site of a Sickle Cell Disease mutation are provided. Nanoparticle formulations for delivering the PNA oligomers and donor oligonucleotides, and potentiating agents for increase the frequency of recombination of the donor oligonucleotide are also provided. Methods of using the PNA oligomers, donor oligonucleotides, nanoparticles, and potentiating agents for treating Sickle Cell Disease are also provided.
    Type: Application
    Filed: July 31, 2020
    Publication date: September 8, 2022
    Inventors: Peter Glazer, Elias Quijano, W. Mark Saltzman, Hee Won Suh
  • Publication number: 20210338815
    Abstract: Compositions for improved gene editing and methods of use thereof are disclosed. In a preferred method, gene editing involves use of a cell-penetrating anti-DNA antibody, such as 3E10, as a potentiating agent to enhance gene editing by nucleases and triplex forming oligonucleotides. Genomic modification occurs at a higher frequency when cells are contacted with the potentiating agent and nuclease or triplex forming oligonucleotide, as compared to the absence of the potentiating agent. The methods are suitable for both ex vivo and in vivo approaches to gene editing and are useful for treating a subject with a genetic disease or disorder. Nanoparticle compositions for intracellular delivery of the gene editing compositions are provided and are particularly advantageous for use with in vivo applications.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 4, 2021
    Inventors: Elias Quijano, Adele Ricciardi, Raman Bahal, Audrey Turchick, Nicholas Economos, W. Mark Saltzman, Peter Glazer
  • Publication number: 20210340280
    Abstract: Compositions for enhanced gene editing and methods of use thereof are. The composition contains a cell-penetrating antibody and a donor oligonucleotide containing a sequence that can correct a mutation in a cell's genome. Preferably, the composition does not contain a nuclease, PNA, or nanoparticle. The compositions are used to modify the genome of a cell by contacting the cell with an effective amount of the composition. Genomic modification occurs at a higher frequency both ex vivo and in vivo, when cells are contacted with the cell-penetrating antibody and donor oligonucleotide as compared to the absence of the cell-penetrating antibody.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 4, 2021
    Inventors: Elias Quijano, Audrey Turchick, Peter Glazer
  • Patent number: 11136597
    Abstract: Compositions and methods for enhancing targeted gene editing and methods of use thereof are disclosed. In the most preferred embodiments, gene editing is carried out utilizing a gene editing composition such as triplex-forming oligonucleotides, CRISPR, zinc finger nucleases, TALENS, or others, in combination with a gene modification potentiating agent such as stem cell factor (SCF), a CHK1 or ATR inhibitor, or a combination thereof. A particular preferred gene editing composition is triplex-forming peptide nucleic acids (PNAs) substituted at the ? position for increased DNA binding affinity. Nanoparticle compositions for intracellular delivery of the gene editing composition are also provided and particular advantageous for use with in vivo applications.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 5, 2021
    Assignees: Yale University, Carnegie Mellon University
    Inventors: W. Mark Saltzman, Peter Glazer, Raman Bahal, Nicole Ali McNeer, Danith H. Ly, Elias Quijano
  • Publication number: 20200054553
    Abstract: Biodegradable contraceptive implants and methods of making and using thereof, are preferably formed of poly(?-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)], a family of polyester copolymers that degrade slowly in the presence of water. The material is suitable as the basis of a biodegradable contraceptive implant that provides sustained release of a progestin at a rate similar to a commercially available nondegradable implant. In a preferred embodiment, the progestin is levonorgestrel (LNG), a hormone that prevents pregnancy by preventing the release of an egg from the ovary or by preventing fertilization of the egg by sperm. The implant may be inserted subcutaneously, allowing degradation over a period of up to about 18 or 24 months, eliminating the need for removal by a trained practitioner.
    Type: Application
    Filed: October 24, 2017
    Publication date: February 20, 2020
    Inventors: W. Mark Saltzman, Elias Quijano, Fan Yang, Zhaozhong Jiang, Derek Owen
  • Publication number: 20170283830
    Abstract: Compositions and methods for enhancing targeted gene editing and methods of use thereof are disclosed. In the most preferred embodiments, gene editing is carried out utilizing a gene editing composition such as triplex-forming oligonucleotides, CRISPR, zinc finger nucleases, TALENS, or others, in combination with a gene modification potentiating agent such as stem cell factor (SCF), a CHK1 or ATR inhibitor, or a combination thereof. A particular preferred gene editing composition is triplex-forming peptide nucleic acids (PNAs) substituted at the ? position for increased DNA binding affinity. Nanoparticle compositions for intracellular delivery of the gene editing composition are also provided and particular advantageous for use with in vivo applications.
    Type: Application
    Filed: February 16, 2017
    Publication date: October 5, 2017
    Inventors: W. Mark Saltzman, Peter Glazer, Raman Bahal, Nicole Ali McNeer, Danith H. Ly, Elias Quijano