Patents by Inventor Elijah V. Karpov

Elijah V. Karpov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113123
    Abstract: An apparatus is provided which comprises: a plurality of logic blocks comprising transistors on a substrate, the logic blocks to implement logic functions; a plurality of input/output (I/O) blocks connecting the logic blocks with components external to the apparatus; a plurality of interconnect layers comprising wires and vias surrounded by interlayer dielectric above the substrate, the wires and vias conductively coupling the plurality of logic blocks and the plurality of I/O blocks; a plurality of programmable switches to configure connections between the plurality of logic blocks and the plurality of I/O blocks; and a ferroelectric material in a capacitor coupled to the gate or on the gate dielectric itself of one or more of the transistors. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Elijah V. Karpov, Sou-Chi Chang
  • Patent number: 11895846
    Abstract: A ferroelectric field-effect transistor (FeFET) includes first and second gate electrodes, source and drain regions, a semiconductor region between and physically connecting the source and drain regions, a first gate dielectric between the semiconductor region and the first gate electrode, and a second gate dielectric between the semiconductor region and the second gate electrode. The first gate dielectric includes a ferroelectric dielectric. In an embodiment, a memory cell includes this FeFET, with the first gate electrode being electrically connected to a wordline and the drain region being electrically connected to a bitline. In another embodiment, a memory array includes wordlines extending in a first direction, bitlines extending in a second direction, and a plurality of such memory cells at crossing regions of the wordlines and the bitlines. In each memory cell, the wordline is a corresponding one of the wordlines and the bitline is a corresponding one of the bitlines.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Elijah V. Karpov
  • Publication number: 20230360970
    Abstract: The present disclosure is directed to semiconductor deposition tools having a specimen support, at least one ion gun directed to a specimen positioned on the specimen support, at least one source, and at least one electron beam gun directed at the source. In an aspect, the electron beam guns, sources, and ion beam guns are positioned below the specimen support and specimen positioned thereon, which has its top surface facing downward. In another aspect, the method includes activating the electron beam gun and depositing the source material in a trench in the specimen and on surfaces adjacent to the opening of the trench and activating the ion beam gun to remove portions of the source material deposited on the surfaces adjacent to the opening of the trench.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Inventors: Elijah V. KARPOV, Matthew METZ, Robert WILLONER
  • Patent number: 11735595
    Abstract: Thin film tunnel field effect transistors having relatively increased width are described. In an example, integrated circuit structure includes an insulator structure above a substrate. The insulator structure has a topography that varies along a plane parallel with a global plane of the substrate. A channel material layer is on the insulator structure. The channel material layer is conformal with the topography of the insulator structure. A gate electrode is over a channel portion of the channel material layer on the insulator structure. A first conductive contact is over a source portion of the channel material layer on the insulator structure, the source portion having a first conductivity type. A second conductive contact is over a drain portion of the channel material layer on the insulator structure, the drain portion having a second conductivity type opposite the first conductivity type.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Brian S. Doyle, Ravi Pillarisetty, Abhishek A. Sharma, Elijah V. Karpov
  • Publication number: 20230223475
    Abstract: Disclosed herein are transistors with ferroelectric gates, and related methods and devices. For example, in some embodiments, a transistor may include a channel material, and a gate stack, and the gate stack may include a gate electrode material and a ferroelectric material between the gate electrode material and the channel material.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 13, 2023
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Brian S. Doyle, Elijah V. Karpov, Prashant Majhi, Gilbert W. Dewey, Benjamin Chu-Kung, Van H. Le, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11651203
    Abstract: Embodiments may relate to a structure to be used in a neural network. A first column and a second column, both of which are to couple with a substrate. A capacitor structure may be electrically coupled with the first column. An insulator-metal transition (IMT) structure may be coupled with the first column such that the capacitor structure is electrically positioned between the IMT structure and the first column. A resistor structure may further be electrically coupled with the IMT structure and the second column such that the resistor structure is electrically positioned between the second column and the IMT structure. Other embodiments may be described or claimed.
    Type: Grant
    Filed: December 18, 2021
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Dmitri E. Nikonov, Elijah V. Karpov, Ian A. Young
  • Patent number: 11640995
    Abstract: Ferroelectric field effect transistors (FeFETs) having band-engineered interface layers are described. In an example, an integrated circuit structure includes a semiconductor channel layer above a substrate. A metal oxide material is on the semiconductor channel layer, the metal oxide material having no net dipole. A ferroelectric oxide material is on the metal oxide material. A gate electrode is on the ferroelectric oxide material, the gate electrode having a first side and a second side opposite the first side. A first source/drain region is at the first side of the gate electrode, and a second source/drain region is at the second side of the gate electrode.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Brian S. Doyle, Kevin P. O'Brien, Abhishek A. Sharma, Elijah V. Karpov, Kaan Oguz
  • Patent number: 11640839
    Abstract: A 1S-1T ferroelectric memory cell is provided that include a transistor and a two-terminal selector device. The transistor exhibits a low conductive state and a high conductive state (channel resistance), depending on drive voltage. The two-terminal selector device exhibits one of an ON-state and an OFF-state depending upon whether the transistor is in its low conductive state or its high conductive state. The transistor may be, for instance, a ferroelectric gate vertical transistor. Modulation of a polarization state of ferroelectric material of the vertical transistor may be utilized to switch the state of the selector device. The memory cell may thus selectively be operated in one of an ON-state and an OFF-state depending upon whether the selector device is in its ON-state or OFF-state.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Elijah V. Karpov
  • Publication number: 20230116719
    Abstract: Embodiments of the disclosure are directed to advanced integrated circuit structure fabrication and, in particular, to memory devices with nitride-based ferroelectric materials. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: April 13, 2023
    Inventors: Elijah V. KARPOV, Sou-Chi CHANG, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20230095402
    Abstract: Contact over active gate (COAG) structures with conductive trench contact taps are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. One of the plurality of conductive trench contact structures includes a conductive tap structure protruding through the corresponding trench insulating layer. An interlayer dielectric material is above the trench insulating layers and the gate insulating layers. A conductive structure is in direct contact with the conductive tap structure of the one of the plurality of conductive trench contact structures.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Manish CHANDHOK, Elijah V. KARPOV, Mohit K. HARAN, Reken PATEL, Charles H. WALLACE, Gurpreet SINGH, Florian GSTREIN, Eungnak HAN, Urusa ALAAN, Leonard P. GULER, Paul A. NYHUS
  • Publication number: 20230099724
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, to memory devices having ferroelectric capacitors coupled between intersecting bitlines and wordlines. Other embodiments may be disclosed or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Elijah V. KARPOV, Sou-Chi CHANG, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20230101212
    Abstract: Contact over active gate (COAG) structures with conductive trench contact taps are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate, each of the gate structures including a gate insulating layer thereon. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. One of the plurality of conductive trench contact structures includes a conductive tap structure protruding through the corresponding trench insulating layer. An interlayer dielectric material is above the trench insulating layers and the gate insulating layers. A conductive structure is in direct contact with the conductive tap structure of the one of the plurality of conductive trench contact structures.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Inventors: Manish CHANDHOK, Elijah V. KARPOV, Mohit K. HARAN, Reken PATEL, Charles H. WALLACE, Gurpreet SINGH, Florian GSTREIN, Eungnak HAN, Urusa ALAAN, Leonard P. GULER, Paul A. NYHUS
  • Patent number: 11605671
    Abstract: Embedded non-volatile memory structures having double selector elements are described. In an example, a memory device includes a word line. A double selector element is above the word line. The double selector element includes a first selector material layer, a second selector material layer different than the first selector material layer, and a conductive layer directly between the first selector material layer and the second selector material layer. A bipolar memory element is above the word line. A conductive electrode is between the double selector element and the bipolar memory element. A bit line is above the word line.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Ravi Pillarisetty, Elijah V. Karpov, Brian S. Doyle, Abhishek A. Sharma
  • Patent number: 11522011
    Abstract: Embedded non-volatile memory structures having selector elements with ballast are described. In an example, a memory device includes a word line. A selector element is above the word line. The selector element includes a selector material layer and a ballast material layer different than the selector material layer. A bipolar memory element is above the word line. A conductive electrode is between the elector element and the bipolar memory element. A bit line is above the word line.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Ravi Pillarisetty, Elijah V. Karpov, Brian S. Doyle, Abhishek A. Sharma
  • Patent number: 11462684
    Abstract: An RRAM device is disclosed. The RRAM device includes a bottom electrode, a high-k material on the bottom electrode, a top electrode, a top contact on the top electrode and an encapsulating layer of Al2O3. The encapsulating layer encapsulates the bottom electrode, the high-k material, the top electrode and the top contact.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Albert Chen, Nathan Strutt, Oleg Golonzka, Pedro Quintero, Christopher J. Jezewski, Elijah V. Karpov
  • Patent number: 11430949
    Abstract: Disclosed herein are metal filament memory cells, and related devices and techniques. In some embodiments, a memory cell may include: a transistor having a source/drain region; and a metal filament memory device including an active metal and an electrolyte; wherein the electrolyte is coupled between the active metal and the source/drain region when the transistor is an n-type metal oxide semiconductor (NMOS) transistor, and the active metal is coupled between the electrolyte and the source/drain region when the transistor is a p-type metal oxide semiconductor (PMOS) transistor.
    Type: Grant
    Filed: September 25, 2016
    Date of Patent: August 30, 2022
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Elijah V. Karpov, Prashant Majhi, Niloy Mukherjee
  • Publication number: 20220262860
    Abstract: Disclosed herein are selector devices and related devices and techniques. In some embodiments, a selector device may include a first electrode, a second electrode, and a selector material between the first electrode and the second electrode. The selector material may include germanium, tellurium, and sulfur.
    Type: Application
    Filed: May 4, 2022
    Publication date: August 18, 2022
    Applicant: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Ravi Pillarisetty, Prashant Majhi, Abhishek A. Sharma
  • Publication number: 20220246646
    Abstract: Thin film tunnel field effect transistors having relatively increased width are described. In an example, integrated circuit structure includes an insulator structure above a substrate. The insulator structure has a topography that varies along a plane parallel with a global plane of the substrate. A channel material layer is on the insulator structure. The channel material layer is conformal with the topography of the insulator structure. A gate electrode is over a channel portion of the channel material layer on the insulator structure. A first conductive contact is over a source portion of the channel material layer on the insulator structure, the source portion having a first conductivity type. A second conductive contact is over a drain portion of the channel material layer on the insulator structure, the drain portion having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: April 14, 2022
    Publication date: August 4, 2022
    Inventors: Prashant Majhi, Brian S. Doyle, Ravi Pillarisetty, Abhishek A. Sharma, Elijah V. Karpov
  • Patent number: 11404639
    Abstract: Disclosed herein are selector devices and related devices and techniques. For example, in some embodiments, a selector device may include a first electrode, a second electrode, and a selector material stack between the first electrode and the second electrode. The selector material stack may include a dielectric material layer between a first conductive material layer and a second conductive material layer. A first material layer may be present between the first electrode and the first conductive material layer, and a second material layer may be present between the first conductive material layer and the dielectric layer. The first material layer and the second material layer may be diffusion barriers, and the second material layer may be a weaker diffusion barrier than the first material layer.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Prashant Majhi, Abhishek A. Sharma, Ravi Pillarisetty
  • Patent number: 11393526
    Abstract: Described is a memory cell which comprises: a transistor positioned in a backend of a die, the transistor comprising: a source structure and a drain structure; a gate structure between the source structure and the drain structure; a source contact coupled to and above the source structure and a drain contact coupled to and below the drain structure; and a Resistive Random Access Memory (RRAM) device coupled to the drain contact.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Elijah V. Karpov, Abhishek A. Sharma, Prashant Majhi, Brian S. Doyle