Patents by Inventor Eliodor Ghenciu

Eliodor Ghenciu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201839
    Abstract: A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Eliodor Ghenciu, Evan Foster, Jorge Fonseca, Kevin Maher
  • Patent number: 11590506
    Abstract: A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: February 28, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Eliodor Ghenciu, Evan Foster, Jorge Fonseca, Kevin Maher
  • Publication number: 20230030218
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Eliodor GHENCIU, Theodore E. STRAUB, Evan W. FOSTER, Michael C. PALLAS
  • Patent number: 11493526
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: November 8, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20200319221
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 8, 2020
    Inventors: Eliodor GHENCIU, Theodore E. STRAUB, Evan W. FOSTER, Michael C. PALLAS
  • Patent number: 10627421
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2020
    Assignee: Life Technologies Corporation
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20190381502
    Abstract: A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 19, 2019
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Eliodor Ghenciu, Evan Foster, Jorge Fonseca, Kevin Maher
  • Publication number: 20150080247
    Abstract: A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 19, 2015
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Eliodor Ghenciu, Evan W. Foster, Jorge Fonseca, Kevin Maher
  • Publication number: 20150051118
    Abstract: An apparatus for biological reactions is provided. The apparatus includes a substrate and a plurality of reaction sites within the substrate. A surface of the substrate is configured to have a first hydrophilicity and each surface of the plurality of reaction sites is configured to have a second hydrophilicity to load a substantial number of reaction sites with a sample volume. The sample volume of each loaded reaction site is substantially confined to its respective reaction site. The sample volume is configured to undergo a biological reaction within the reaction site.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 19, 2015
    Inventors: Eliodor Ghenciu, Theodore E. Straub, Evan W. Foster, Michael C. Pallas
  • Publication number: 20150044686
    Abstract: An article for holding a plurality of biological samples includes a substrate a substrate comprising a first surface and an opposing second surface and a plurality of reaction sites in the substrate. Each of the reaction sites extends from an opening in the first surface to an opening in the second surface. The reaction sites comprise a hexagonal shape and are configured to provide sufficient surface tension by capillary action to hold respective biological samples. The reaction sites have a density over at least a portion of the surfaces that is at least 170 holes per square millimeter. At least one of the surfaces may have a surface roughness characterized by an arithmetic average roughness (Ra) that is less than or equal to 5 nanometers.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 12, 2015
    Applicant: Life Technologies Corporation
    Inventors: Michael Pallas, James C. Nurse, Kevin Maher, Jorge Fonseca, Eliodor Ghenciu, Evan Foster
  • Publication number: 20070111533
    Abstract: A method and composition for removing silicon-containing sacrificial layers from Micro Electro Mechanical System (MEMS) and other semiconductor substrates having such sacrificial layers is described. The etching compositions include a supercritical fluid (SCF), an etchant species, a co-solvent, and optionally a surfactant. Such etching compositions overcome the intrinsic deficiency of SCFs as cleaning reagents, viz., the non-polar character of SCFs and their associated inability to solubilize polar species that must be removed from the semiconductor substrate. The resultant etched substrates experience lower incidents of stiction relative to substrates etched using conventional wet etching techniques.
    Type: Application
    Filed: January 8, 2007
    Publication date: May 17, 2007
    Inventors: Michael Korzenski, Thomas Baum, Chongying Xu, Eliodor Ghenciu
  • Publication number: 20060204427
    Abstract: Certain applicator liquids and method of making the applicator liquids are described. The applicator liquids can be used to form nanotube films or fabrics of controlled properties. An applicator liquid for preparation of a nanotube film or fabric includes a controlled concentration of nanotubes dispersed in a liquid medium containing water. The controlled concentration is sufficient to form a nanotube fabric or film of preselected density and uniformity.
    Type: Application
    Filed: December 15, 2005
    Publication date: September 14, 2006
    Applicant: Nantero, Inc.
    Inventors: Eliodor Ghenciu, Tzong-Ru Han, Ramesh Sivarajan, Thomas Rueckes, Rahul Sen, Brent Segal, Jonathan Ward
  • Publication number: 20060122085
    Abstract: A composition including supercritical fluid and at least one additive selected from fluoro species, and primary and/or secondary amines, optionally with co-solvent, low k material attack-inhibitor(s) and/or surfactant(s). The composition has particular utility for cleaning of semiconductor wafers to remove post-ashing residues therefrom.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 8, 2006
    Inventors: Michael Korzenski, Chongying Xu, Thomas Baum, David Minsek, Eliodor Ghenciu
  • Publication number: 20060073998
    Abstract: A post-etch residue cleaning composition for cleaning ashed or unashed aluminum/SiN/Si post-etch residue from small dimensions on semiconductor substrates. The cleaning composition contains supercritical CO2 (SCCO2), alcohol, fluoride source, an aluminum ion complexing agent and, optionally, corrosion inhibitor. Such cleaning composition overcomes the intrinsic deficiency of SCCO2 as a cleaning reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the post-etch residue and that must be removed from the semiconductor substrate for efficient cleaning. The cleaning composition enables damage-free, residue-free cleaning of substrates having ashed or unashed aluminum/SiN/Si post-etch residue thereon.
    Type: Application
    Filed: November 14, 2005
    Publication date: April 6, 2006
    Inventors: Michael Korzenski, Eliodor Ghenciu, Chongying Xu, Thomas Baum
  • Publication number: 20060065294
    Abstract: Drying of patterned wafers is achieved in a manner effecting removal of water from the patterned wafers without collapse or deterioration of the pattern structures thereof. The drying is carried out in one aspect of the invention with a composition containing supercritical fluid, and at least one water-reactive agent that chemically reacts with water to form reaction product(s) more soluble in the supercritical fluid than water. Various methodologies are described for use of supercritical fluids to dry patterned wafers, which avoid the (low water solubility) deficiency of supercritical fluids such as supercritical CO2.
    Type: Application
    Filed: November 10, 2005
    Publication date: March 30, 2006
    Inventors: Chongying Xu, Michael Korzenski, Thomas Baum, Alexander Borovik, Eliodor Ghenciu
  • Publication number: 20060040840
    Abstract: A photoresist cleaning composition for removing photoresist and ion implanted photoresist from semiconductor substrates. The cleaning composition contains supercritical CO2 (SCCO2) and alcohol for use in removing photoresist that is not ion-implanted. When the photoresist has been subjected to ion implantation, the cleaning composition additionally contains a fluorine ion source. Such cleaning composition overcomes the intrinsic deficiency of SCCO2 as a cleaning reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the photoresist and that must be removed from the semiconductor substrate for efficient cleaning. The cleaning composition enables damage-free, residue-free cleaning of substrates having photoresist or ion implanted photoresist thereon.
    Type: Application
    Filed: October 6, 2005
    Publication date: February 23, 2006
    Inventors: Michael Korzenski, Eliodor Ghenciu, Chongying Xu, Thomas Baum
  • Publication number: 20050118813
    Abstract: A method and composition for removing silicon-containing sacrificial layers from Micro Electro Mechanical System (MEMS) and other semiconductor substrates having such sacrificial layers is described. The etching compositions include a supercritical fluid (SCF), an etchant species, a co-solvent, and optionally a surfactant. Such etching compositions overcome the intrinsic deficiency of SCFs as cleaning reagents, viz., the non-polar character of SCFs and their associated inability to solubilize polar species that must be removed from the semiconductor substrate. The resultant etched substrates experience lower incidents of stiction relative to substrates etched using conventional wet etching techniques.
    Type: Application
    Filed: February 19, 2004
    Publication date: June 2, 2005
    Inventors: Michael Korzenski, Thomas Baum, Chongying Xu, Eliodor Ghenciu
  • Publication number: 20050118832
    Abstract: A method and composition for removing silicon-containing sacrificial layers from Micro Electro Mechanical System (MEMS) substrates having such sacrificial layers is described. The etching compositions include a supercritical fluid, an etchant species, a co-solvent, and optionally a surfactant. Such etching compositions overcome the intrinsic deficiency of SCFs as cleaning reagents, viz., the non-polar character of SCFs and their associated inability to solubilize polar species that must be removed from the semiconductor substrate. The resultant etched MEMS substrates experience lower incidents of stiction relative to MEMS substrates etched using conventional wet etching techniques.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 2, 2005
    Inventors: Michael Korzenski, Thomas Baum, Eliodor Ghenciu