Patents by Inventor Elizabeth A. Kolawa

Elizabeth A. Kolawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9697109
    Abstract: Method for generating dynamically configurable test doubles for software testing includes: detecting functions or methods invocations in a source code under test; collecting information about parameters and return types of one or more of original functions and original methods that are invoked by the source code under test, generating test doubles using source code with alternative definitions based on collected information; instrumenting the source code under test to replace the calls to one or more of original functions and methods with calls to the generated test doubles; and dynamically configuring runtime behavior of the generated test doubles, where all input parameters and return values of the one or more of original functions and original methods are provided to respective retrieved trigger objects by passing said input parameters and return values as arguments to function calls.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: July 4, 2017
    Assignee: Parasoft Corporation
    Inventors: Marek Kucharski, Elizabeth Kolawa, Piotr Pepek, Patrycjusz Franczak, Jakub Labenski, Miroslaw Zielinski
  • Publication number: 20150378880
    Abstract: Method for generating dynamically configurable test doubles for software testing includes: detecting functions or methods invocations in a source code under test; collecting information about parameters and return types of one or more of original functions and original methods that are invoked by the source code under test, generating test doubles using source code with alternative definitions based on collected information; instrumenting the source code under test to replace the calls to one or more of original functions and methods with calls to the generated test doubles; and dynamically configuring runtime behavior of the generated test doubles, where all input parameters and return values of the one or more of original functions and original methods are provided to respective retrieved trigger objects by passing said input parameters and return values as arguments to function calls.
    Type: Application
    Filed: May 11, 2015
    Publication date: December 31, 2015
    Inventors: Marek Kucharski, Elizabeth Kolawa, Piotr Pepek, Patrycjusz Franczak, Jakub Labenski, Miroslaw Zielinski
  • Patent number: 6787691
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: September 7, 2004
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alex Borshchevsky, Wayne Phillips, Elizabeth A. Kolawa, G. Jeffrey Snyder, Thierry Caillat, Thorsten Kascich, Peter Mueller
  • Patent number: 6753469
    Abstract: A power source converts &agr;-particle energy into electricity by coulomb collision in doped diamond films. Alpha particle decay from curium-244 creates electron-hole pairs by freeing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the N- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of &agr;-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from &agr;-particle emission. Additional insulation or isolation may be provided in order to prevent damage from &agr;-particle collision.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: June 22, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Elizabeth A. Kolawa, Jagdishbhai U. Patel, Jean-Pierre Fleurial
  • Publication number: 20030041892
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Application
    Filed: May 14, 2002
    Publication date: March 6, 2003
    Applicant: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alex Borshchevsky, Wayne Phillips, Elizabeth A. Kolawa, G. Jeffrey Snyder, Thierry Caillat, Thorsten Kascich, Peter Mueller
  • Patent number: 6388185
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: May 14, 2002
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Margaret A. Ryan, Alex Borshchevsky, Wayne Phillips, Elizabeth A. Kolawa, G. Jeffrey Snyder, Thierry Caillat, Thorsten Kascich, Peter Mueller
  • Patent number: 6288321
    Abstract: A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a Bi2Te3-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: September 11, 2001
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, N. Thomas Olson, Alexander Borshchevsky, Thierry Caillat, Elizabeth Kolawa, M. Amy Ryan, Wayne M. Philips
  • Patent number: 6031611
    Abstract: A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: February 29, 2000
    Assignee: California Institute of Technology
    Inventors: Ares J. Rosakis, Ramen P. Singh, Elizabeth Kolawa, Nicholas R. Moore, Jr.