Patents by Inventor Elizabeth A. Poore

Elizabeth A. Poore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11844832
    Abstract: Provided are methods for rapidly inactivating a pathogen, or for producing a vaccine composition containing an inactivated noninfectious pathogen having retained antigenicity and/or immunogenicity, comprising exposing the pathogen to a chemical inactivating agent (e.g., one or more chemical oxidizing, alkylating or crosslinking agents) in the presence of inorganic polyatomic oxyanions in an amount and for a time sufficient to render the pathogen noninfectious while enhancing retention of pathogen antigenicity and/or immunogenicity relative to that retained by contacting the pathogen with the chemical inactivating agent alone. The methods are broadly applicable to pathogens having RNA or DNA genomes (e.g., including viruses, bacteria, fungi, and parasites).
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 19, 2023
    Assignee: Najit Technologies, Inc.
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Publication number: 20230346910
    Abstract: Provided are surprisingly effective methods for inactivating pathogens, and for producing highly immunogenic vaccine compositions containing an inactivated pathogen rendered noninfectious by exposure to a Fenton reagent, or by exposure to a Fenton reagent or a component thereof in combination with a methisazone reagent selected from the group consisting of methisazone, methisazone analogs, functional group(s)/substructure(s) of methisazone, and combinations thereof. The methods efficiently inactivate pathogens, while substantially retaining pathogen antigenicity and/or immunogenicity, and are suitable for inactivating pathogens, or for the preparation of vaccines for a wide variety of pathogens with genomes comprising RNA or DNA, including viruses and bacteria. Also provided are highly immunogenic inactivated vaccine compositions prepared by using any of the disclosed methods, and methods for eliciting an immune response in a subject by administering such vaccine compositions.
    Type: Application
    Filed: April 19, 2023
    Publication date: November 2, 2023
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Patent number: 11633470
    Abstract: Provided are surprisingly effective methods for inactivating pathogens, and for producing highly immunogenic vaccine compositions containing an inactivated pathogen rendered noninfectious by exposure to a Fenton reagent, or by exposure to a Fenton reagent or a component thereof in combination with a methisazone reagent selected from the group consisting of methisazone, methisazone analogs, functional group(s)/substructure(s) of methisazone, and combinations thereof. The methods efficiently inactivate pathogens, while substantially retaining pathogen antigenicity and/or immunogenicity, and are suitable for inactivating pathogens, or for the preparation of vaccines for a wide variety of pathogens with genomes comprising RNA or DNA, including viruses and bacteria. Also provided are highly immunogenic inactivated vaccine compositions prepared by using any of the disclosed methods, and methods for eliciting an immune response in a subject by administering such vaccine compositions.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: April 25, 2023
    Assignee: Najit Technologies, Inc.
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Publication number: 20220241395
    Abstract: Provided are surprisingly effective methods for inactivating pathogens, and for producing highly immunogenic vaccine compositions containing an inactivated pathogen rendered noninfectious by exposure to a Fenton reagent, or by exposure to a Fenton reagent or a component thereof in combination with a methisazone reagent selected from the group consisting of methisazone, methisazone analogs, functional group(s)/substructure(s) of methisazone, and combinations thereof. The methods efficiently inactivate pathogens, while substantially retaining pathogen antigenicity and/or immunogenicity, and are suitable for inactivating pathogens, or for the preparation of vaccines for a wide variety of pathogens with genomes comprising RNA or DNA, including viruses and bacteria. Also provided are highly immunogenic inactivated vaccine compositions prepared by using any of the disclosed methods, and methods for eliciting an immune response in a subject by administering such vaccine compositions.
    Type: Application
    Filed: October 8, 2021
    Publication date: August 4, 2022
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Patent number: 11141475
    Abstract: Provided are surprisingly effective methods for inactivating pathogens, and for producing highly immunogenic vaccine compositions containing an inactivated pathogen rendered noninfectious by exposure to a Fenton reagent, or by exposure to a Fenton reagent or a component thereof in combination with a methisazone reagent selected from the group consisting of methisazone, methisazone analogs, functional group(s)/substructure(s) of methisazone, and combinations thereof. The methods efficiently inactivate pathogens, while substantially retaining pathogen antigenicity and/or immunogenicity, and are suitable for inactivating pathogens, or for the preparation of vaccines for a wide variety of pathogens with genomes comprising RNA or DNA, including viruses and bacteria. Also provided are highly immunogenic inactivated vaccine compositions prepared by using any of the disclosed methods, and methods for eliciting an immune response in a subject by administering such vaccine compositions.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: October 12, 2021
    Assignee: Najit Technologies, Inc.
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Publication number: 20210196812
    Abstract: Provided are methods for rapidly inactivating a pathogen, or for producing a vaccine composition containing an inactivated noninfectious pathogen having retained antigenicity and/or immunogenicity, comprising exposing the pathogen to a chemical inactivating agent (e.g., one or more chemical oxidizing, alkylating or crosslinking agents) in the presence of inorganic polyatomic oxyanions in an amount and for a time sufficient to render the pathogen noninfectious while enhancing retention of pathogen antigenicity and/or immunogenicity relative to that retained by contacting the pathogen with the chemical inactivating agent alone. The methods are broadly applicable to pathogens having RNA or DNA genomes (e.g., including viruses, bacteria, fungi, and parasites).
    Type: Application
    Filed: August 14, 2020
    Publication date: July 1, 2021
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Patent number: 10744198
    Abstract: Provided are methods for rapidly inactivating a pathogen, or for producing a vaccine composition containing an inactivated noninfectious pathogen having retained antigenicity and/or immunogenicity, comprising exposing the pathogen to a chemical inactivating agent (e.g., one or more chemical oxidizing, alkylating or crosslinking agents) in the presence of inorganic polyatomic oxyanions in an amount and for a time sufficient to render the pathogen noninfectious while enhancing retention of pathogen antigenicity and/or immunogenicity relative to that retained by contacting the pathogen with the chemical inactivating agent alone. The methods are broadly applicable to pathogens having RNA or DNA genomes (e.g., including viruses, bacteria, fungi, and parasites).
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: August 18, 2020
    Assignee: Najit Technologies, Inc.
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Publication number: 20200108094
    Abstract: Provided are surprisingly effective methods for inactivating pathogens, and for producing highly immunogenic vaccine compositions containing an inactivated pathogen rendered noninfectious by exposure to a Fenton reagent, or by exposure to a Fenton reagent or a component thereof in combination with a methisazone reagent selected from the group consisting of methisazone, methisazone analogs, functional group(s)/substructure(s) of methisazone, and combinations thereof. The methods efficiently inactivate pathogens, while substantially retaining pathogen antigenicity and/or immunogenicity, and are suitable for inactivating pathogens, or for the preparation of vaccines for a wide variety of pathogens with genomes comprising RNA or DNA, including viruses and bacteria. Also provided are highly immunogenic inactivated vaccine compositions prepared by using any of the disclosed methods, and methods for eliciting an immune response in a subject by administering such vaccine compositions.
    Type: Application
    Filed: May 10, 2017
    Publication date: April 9, 2020
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Publication number: 20190201520
    Abstract: Provided are methods for rapidly inactivating a pathogen, or for producing a vaccine composition containing an inactivated noninfectious pathogen having retained antigenicity and/or immunogenicity, comprising exposing the pathogen to a chemical inactivating agent (e.g., one or more chemical oxidizing, alkylating or crosslinking agents) in the presence of inorganic polyatomic oxyanions in an amount and for a time sufficient to render the pathogen noninfectious while enhancing retention of pathogen antigenicity and/or immunogenicity relative to that retained by contacting the pathogen with the chemical inactivating agent alone. The methods are broadly applicable to pathogens having RNA or DNA genomes (e.g., including viruses, bacteria, fungi, and parasites).
    Type: Application
    Filed: May 10, 2017
    Publication date: July 4, 2019
    Inventors: Ian J. Amanna, Elizabeth A. Poore