Patents by Inventor Elizabeth DUXBURY

Elizabeth DUXBURY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372015
    Abstract: A method of planning a patellar replacement for a patient is provided. Input related to patient anatomy is received (e.g., demographic information) and imaging data is obtained from 2D or 3D medical imaging Biomechanical measurements of the patellofemoral joint are determined including a mechanical axis and pre-operative leg deformity. A 3D model of the patient anatomy is generated based on the input, and the 3D model is characterized in terms of the morphology of the patella. An implant is sized and fitted to the 3D model and implant position and orientation are optimized based on the biomechanics. Results are outputted as a patient report or a surgical plan to a computing device and/or a storage medium. A tracker unit for tracking a patella bone is also provided. The tracker unit comprises a support configured to penetrate the patella and a fiducial marker for detection by a tracking system.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 23, 2023
    Inventors: Ruxandra Cristiana MARINESCU TANASOCA, Brian W. MCKINNON, Elizabeth A. DUXBURY, Russell J. BROOKE, Mark L. MORRISON
  • Publication number: 20230329794
    Abstract: A method of assessing hip joint kinematics based on a spinopelvic condition of a patient is provided. The method comprises receiving a three-dimensional model of a human anatomy and receiving input related to a spinopelvic condition of a patient. The method further comprises determining a sitting sacral slope and a standing sacral slope of the patient based on the input and classifying the spinopelvic condition of the patient based on at least one of the sitting sacral slope and a standing sacral slope. The method further comprises modifying the three-dimensional model according to the spinopelvic condition and performing at least one simulation of one or more activities with the modified three-dimensional model. The method further comprises and displaying hip joint kinematic information from the simulations on a display device.
    Type: Application
    Filed: September 22, 2021
    Publication date: October 19, 2023
    Inventors: Shawn P. MCGUAN, Elizabeth A. DUXBURY, Alessandro NAVACCHIA, Eric FAHLGREN
  • Publication number: 20230181257
    Abstract: A computer-implemented method for creating an activity-optimized cutting guides for surgical procedures includes receiving one or more pre-operative images depicting one or more anatomical joints of a patient, and creating a three-dimensional anatomical model of the one or more anatomical joints based on the one or more pre-operative images. One or more patient-specific anatomical measurements are determined based on the three-dimensional anatomical model. A statistical model of joint performance is applied to the patient-specific anatomical measurements to identify one or more cut angles for performing a surgical procedure. A patient-specific cutting guide is created that comprises one or more apertures positioned based on the one or more cut angles.
    Type: Application
    Filed: February 7, 2023
    Publication date: June 15, 2023
    Inventors: Shawn P. MCGUAN, Elizabeth DUXBURY
  • Patent number: 11596479
    Abstract: A computer-implemented method for creating an activity-optimized cutting guides for surgical procedures includes receiving one or more pre-operative images depicting one or more anatomical joints of a patient, and creating a three-dimensional anatomical model of the one or more anatomical joints based on the one or more pre-operative images. One or more patient-specific anatomical measurements are determined based on the three-dimensional anatomical model. A statistical model of joint performance is applied to the patient-specific anatomical measurements to identify one or more cut angles for performing a surgical procedure. A patient-specific cutting guide is created that comprises one or more apertures positioned based on the one or more cut angles.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: March 7, 2023
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Shawn P. McGuan, Elizabeth Duxbury
  • Publication number: 20230000556
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints. three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features. surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Application
    Filed: May 19, 2022
    Publication date: January 5, 2023
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Sean M. HADDOCK, Ryan Lloyd LANDON, Shawn P. MCGUAN, Constantinos NIKOU, Elizabeth DUXBURY
  • Patent number: 11337762
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints, three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features, surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 24, 2022
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Brian W. McKinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Sean M. Haddock, Ryan Lloyd Landon, Shawn P. McGuan, Constantinos Nikou, Elizabeth Duxbury
  • Publication number: 20220117663
    Abstract: A method and system for performing hip arthroplasty include analyzing images of a patient's hip joint in a plurality of positions to identify preoperative hip geometry. A statistical patient model predicts prosthetic hip implant performance based on the preoperative knee geometry and given prosthetic knee implant implantation parameters for a plurality of selected patient activities, each having a predefined motion profile to calculate an optimized surgical plan for performing the procedure using a computer assisted surgical system, which may use fiducial markers affixed to patient tissue. Hip geometry can be determined by angles between landmarks in the images, including sacral tilt, pelvic incidence, pelvic femoral angle, and ante-inclination angle in x-ray images. Implant performance criteria can include, for example, edge loading and range of motion of implant components.
    Type: Application
    Filed: February 4, 2020
    Publication date: April 21, 2022
    Inventors: Shawn P. MCGUAN, Elizabeth DUXBURY
  • Publication number: 20220117755
    Abstract: Methods and systems for performing a knee arthroplasty procedure include analyzing images of a patient's patellofemoral and femoral-tibial joint in a plurality of flexion positions to identify preoperative knee geometry. A statistical patient model predicts prosthetic knee implant performance based on the preoperative knee geometry and given prosthetic knee implant implantation parameters to calculate an optimized surgical plan for performing the procedure using a computer assisted surgical system, which may use fiducial markers affixed to patient tissue. The model can include selectable patient activities to adjust the motion profile for plan optimization.
    Type: Application
    Filed: February 4, 2020
    Publication date: April 21, 2022
    Inventors: Shawn P. MCGUAN, Elizabeth DUXBURY
  • Publication number: 20220079678
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints. three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features. surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Application
    Filed: February 4, 2020
    Publication date: March 17, 2022
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, Jr., James Bennett WIEBE, III, Nathaniel Milton LENZ, Sean M. HADDOCK, Ryan Lloyd LANDON, Shawn P. MCGUAN, Constantinos NIKOU, Elizabeth DUXBURY
  • Publication number: 20210315642
    Abstract: A computer-implemented method for creating an activity-optimized cutting guides for surgical procedures includes receiving one or more pre-operative images depicting one or more anatomical joints of a patient, and creating a three-dimensional anatomical model of the one or more anatomical joints based on the one or more pre-operative images. One or more patient-specific anatomical measurements are determined based on the three-dimensional anatomical model. A statistical model of joint performance is applied to the patient-specific anatomical measurements to identify one or more cut angles for performing a surgical procedure. A patient-specific cutting guide is created that comprises one or more apertures positioned based on the one or more cut angles.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 14, 2021
    Inventors: Shawn P. MCGUAN, Elizabeth DUXBURY
  • Publication number: 20210307833
    Abstract: A method of determining patient-specific implant parameters for an implant used in a surgical procedure is described. A surgical system receives one or more initial transfer functions and one or more preoperative input factors for a patient and generates a surgical plan comprising one or more patient-specific implant parameters based on the one or more initial transfer functions and the one or more preoperative input factors for the patient. The surgical system further receives one or more intraoperative input factors for the patient and updates the one or more patient-specific implant parameters based on the one or more intraoperative input factors for the patient. An implant for the patient is selected based on the one or more updated patient-specific implant parameters.
    Type: Application
    Filed: August 19, 2019
    Publication date: October 7, 2021
    Inventors: Daniel FARLEY, Shawn MCGUAN, Branislav JARAMAZ, Brian W. MCKINNON, Constantinos NIKOU, Elizabeth DUXBURY, Ruxandra C. MARINESCU TANASOCA, Ryan LANDON, Randy C. WINEBARGER, William L. Bowers, Jr.
  • Patent number: 11071592
    Abstract: A computer-implemented method for creating an activity-optimized cutting guides for surgical procedures includes receiving one or more pre-operative images depicting one or more anatomical joints of a patient, and creating a three-dimensional anatomical model of the one or more anatomical joints based on the one or more pre-operative images. One or more patient-specific anatomical measurements are determined based on the three-dimensional anatomical model. A statistical model of joint performance is applied to the patient-specific anatomical measurements to identify one or more cut angles for performing a surgical procedure. A patient-specific cutting guide is created that comprises one or more apertures positioned based on the one or more cut angles.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 27, 2021
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asian Pacific Pte. Limited
    Inventors: Shawn P. McGuan, Elizabeth Duxbury
  • Publication number: 20200405396
    Abstract: A computer-implemented method for creating an activity-optimized cutting guides for surgical procedures includes receiving one or more pre-operative images depicting one or more anatomical joints of a patient, and creating a three-dimensional anatomical model of the one or more anatomical joints based on the one or more pre-operative images. One or more patient-specific anatomical measurements are determined based on the three-dimensional anatomical model. A statistical model of joint performance is applied to the patient-specific anatomical measurements to identify one or more cut angles for performing a surgical procedure. A patient-specific cutting guide is created that comprises one or more apertures positioned based on the one or more cut angles.
    Type: Application
    Filed: February 4, 2020
    Publication date: December 31, 2020
    Inventors: Shawn P. MCGUAN, Elizabeth DUXBURY