Patents by Inventor Elizabeth J. Podlaha-Murphy

Elizabeth J. Podlaha-Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180187257
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Application
    Filed: February 19, 2018
    Publication date: July 5, 2018
    Inventors: Steven A. SOPER, Francis BARANY, George GRILLS, Robin McCARLEY, Collin J. McKINNEY, Doral MOLDOVAN, Michael C. MURPHY, Dimitris NIKITOPOULOS, Sunggook PARK, Elizabeth J. PODLAHA-MURPHY
  • Patent number: 9909173
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 6, 2018
    Assignees: Cornell University, University of North Carolina at Chapel Hill, Northeastern University, Board of Supervisors of Louisiana State University and Agriculture and Mechanical College
    Inventors: Steven A. Soper, Francis Barany, George Grills, Robin McCarley, Collin J. McKinney, Dorel Moldovan, Michael C. Murphy, Dimitris Nikitopoulos, Sunggook Park, Elizabeth J. Podlaha-Murphy
  • Publication number: 20150361489
    Abstract: The present invention relates to a device comprising a biomolecular processor. Each biomolecular processor has one or more bioreactor chambers defined by a solid substrate; a support structure within each bioreactor; a cleaving enzyme immobilized to the support structure and operatively positioned within the bioreactor chamber to cleave monomer or multimer units of a biopolymer molecule operatively engaged by the cleaving enzyme; and one or more time-of-flight channels formed in the solid substrate and fluidically coupled to said one or more bioreactor chambers. Each of the time-of-flight channels have two or more sensors including at least (i) a first sensor contacting the time-of-flight channel proximate to the input end of the channel and (ii) a second sensor contacting the time-of-flight channel proximate to the output end of channel. The present invention further relates to methods of sequencing and identifying biopolymer molecules using the device.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 17, 2015
    Inventors: Steven A. SOPER, Francis BARANY, George GRILLS, Robin McCARLEY, Collin J. McKINNEY, Dorel MOLDOVAN, Michael C. MURPHY, Dimitris NIKITOPOULOS, Sunggook PARK, Elizabeth J. PODLAHA-MURPHY
  • Patent number: 9044746
    Abstract: A Ti02-based photocatalyst is fabricated as a composite of titania with adhered nanostructures which contain a non-noble metal in galvanic contact with a noble metal. The catalyst effectively overcome aging and/or deactivation effects observed in a system free of the non-noble metal. The composite material showed a corrosion protective effect on the photoactivity of fresh catalyst for over 180-240 days, and it enhanced the rate of the water reduction reaction relative to bare Ti02. Variations in porosity and non-noble metal content of the alloy portion of the nanostructures influenced the performance of the catalyst composite. The protective effect of the non-noble metal is through a cathodic corrosion protection mechanism.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 2, 2015
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Elizabeth J. Podlaha-Murphy, Savidra Lucatero
  • Publication number: 20130180861
    Abstract: A Ti02-based photocatalyst is fabricated as a composite of titania with adhered nanostructures which contain a non-noble metal in galvanic contact with a noble metal. The catalyst effectively overcome aging and/or deactivation effects observed in a system free of the non-noble metal. The composite material showed a corrosion protective effect on the photoactivity of fresh catalyst for over 180-240 days, and it enhanced the rate of the water reduction reaction relative to bare Ti02. Variations in porosity and non-noble metal content of the alloy portion of the nanostructures influenced the performance of the catalyst composite. The protective effect of the non-noble metal is through a cathodic corrosion protection mechanism.
    Type: Application
    Filed: September 16, 2011
    Publication date: July 18, 2013
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Elizabeth J. Podlaha-Murphy, Savidra Lucatero