Patents by Inventor Elizabeth M. Sweeney

Elizabeth M. Sweeney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931465
    Abstract: Combination treatment with Prussian blue nanoparticles and at least one immunotherapeutic treatment. Stable, functionalized Prussian blue nanoparticles, including those with enhanced stability under alkaline conditions, and methods of cancer, neoplasm, and tumor treatment using them, including photothermal treatment and combination immunotherapeutic treatments.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: March 19, 2024
    Assignee: Children's National Medical Center
    Inventors: Rohan Fernandes, Raymond W. Sze, Conrad Russell Y. Cruz, Anthony D. Sandler, Catherine M. Bollard, Elizabeth E. Sweeney, Juliana Cano-Mejia, Rachel Burga, Matthieu F. Dumont
  • Patent number: 9888876
    Abstract: The present invention, referred to as Oasis is Automated Statistical Inference for Segmentation (OASIS), is a fully automated and robust statistical method for cross-sectional MS lesion segmentation. Using intensity information from multiple modalities of MRI, a logistic regression model assigns voxel-level probabilities of lesion presence. The OASIS model produces interpretable results in the form of regression coefficients that can be applied to imaging studies quickly and easily. OASIS uses intensity-normalized brain MRI volumes, enabling the model to be robust to changes in scanner and acquisition sequence. OASIS also adjusts for intensity inhomogeneities that preprocessing bias field correction procedures do not remove, using BLUR volumes. This allows for more accurate segmentation of brain areas that are highly distorted by inhomogeneities, such as the cerebellum.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: February 13, 2018
    Assignees: The Johns Hopkins University, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Ciprian Crainiceanu, Arthur Jeffrey Goldsmith, Dzung Pham, Daniel S. Reich, Navid Shiee, Russell T. Shinohara, Elizabeth M. Sweeney
  • Patent number: 9607392
    Abstract: A method of automatically detecting tissue abnormalities in images of a region of interest of a subject includes obtaining first image data for the region of interest of the subject, normalizing the first image data based on statistical parameters derived from at least a portion of the first image data to provide first normalized image data, obtaining second image data for the region of interest of the subject, normalizing the second image data based on statistical parameters derived from at least a portion of the second image data to provide second normalized image data, processing the first and second normalized image data to provide resultant image data, and generating a probability map for the region of interest based on the resultant image data and a predefined statistical model. The probability map indicates the probability of at least a portion of an abnormality being present at locations within the region of interest.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: March 28, 2017
    Assignee: The Johns Hopkins University
    Inventors: Ciprian M. Crainiceanu, Elizabeth M. Sweeney, Russell T. Shinohara, Arthur J. Goldsmith, Daniel Reich, Colin Shea
  • Publication number: 20150302599
    Abstract: A method of automatically detecting tissue abnormalities in images of a region of interest of a subject includes obtaining first image data for the region of interest of the subject, normalizing the first image data based on statistical parameters derived from at least a portion of the first image data to provide first normalized image data, obtaining second image data for the region of interest of the subject, normalizing the second image data based on statistical parameters derived from at least a portion of the second image data to provide second normalized image data, processing the first and second normalized image data to provide resultant image data, and generating a probability map for the region of interest based on the resultant image data and a predefined statistical model. The probability map indicates the probability of at least a portion of an abnormality being present at locations within the region of interest.
    Type: Application
    Filed: December 5, 2012
    Publication date: October 22, 2015
    Inventors: Ciprian M. Crainiceanu, Elizabeth M. Sweeney, Russell T. Shinohara, Arthur J. Goldsmith, Daniel Reich
  • Publication number: 20150045651
    Abstract: The present invention, referred to as Oasis is Automated Statistical Inference for Segmentation (OASIS), is a fully automated and robust statistical method for cross-sectional MS lesion segmentation. Using intensity information from multiple modalities of MRI, a logistic regression model assigns voxel-level probabilities of lesion presence. The OASIS model produces interpretable results in the form of regression coefficients that can be applied to imaging studies quickly and easily. OASIS uses intensity-normalized brain MRI volumes, enabling the model to be robust to changes in scanner and acquisition sequence. OASIS also adjusts for intensity inhomogeneities that preprocessing bias field correction procedures do not remove, using BLUR volumes. This allows for more accurate segmentation of brain areas that are highly distorted by inhomogeneities, such as the cerebellum.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 12, 2015
    Inventors: Ciprian Crainiceanu, Arthur Jeffrey Goldsmith, Dzung Pham, Daniel S. Reich, Navid Shiee, Russell T. Shinohara, Elizabeth M. Sweeney