Patents by Inventor Elizabeth Smythe

Elizabeth Smythe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11768191
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. A technique facilitates fluid analysis in situ at a downhole location. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. According to an embodiment, a sample of oil is obtained at the downhole location from oil in a reservoir. A downhole sampling system is used to determine whether a sample has contamination and other selected characteristics of the sample. The data obtained may be processed to provide a formation volume factor of the oil.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 26, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Younes Jalali, Ryota Tonoue, Hua Chen, Christopher Harrison, Kamal Kader, Youxiang Zuo, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Patent number: 11692991
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: July 4, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Publication number: 20220082547
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Patent number: 11187693
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: November 30, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Publication number: 20210263008
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. A technique facilitates fluid analysis in situ at a downhole location. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. According to an embodiment, a sample of oil is obtained at the downhole location from oil in a reservoir. A downhole sampling system is used to determine whether a sample has contamination and other selected characteristics of the sample. The data obtained may be processed to provide a formation volume factor of the oil.
    Type: Application
    Filed: May 13, 2021
    Publication date: August 26, 2021
    Inventors: Younes Jalali, Ryota Tonoue, Hua Chen, Christopher Harrison, Kamal Kader, Youxiang Zuo, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Publication number: 20190360991
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 28, 2019
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Patent number: 10371690
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: August 6, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Patent number: 9689858
    Abstract: A method for determining an asphaltene onset condition of a crude oil is provided. The method includes receiving a crude oil within a downhole tool inside a well and taking a first measurement of an optical property of the received crude oil. The method also includes lowering the pressure or temperature of the crude oil after taking the first measurement of the optical property to cause aggregation of asphaltenes in the crude oil, and then separating aggregated asphaltenes from the crude oil. Further, the method includes taking a second measurement of the optical property of the crude oil within the downhole tool after separating aggregated asphaltenes from the crude oil and determining an asphaltene onset condition of the crude oil through comparison of the first and second measurements of the optical property. Additional methods, systems, and devices are also disclosed.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 27, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: John Ratulowski, Shahnawaz Molla, Vincent Sieben, Farshid Mostowfi, Shawn Taylor, Christopher Harrison, Shunsuke Fukagawa, Elizabeth Smythe, Matthew Sullivan, John Meier
  • Publication number: 20170115266
    Abstract: A method for determining an asphaltene onset condition of a crude oil is provided. The method includes receiving a crude oil within a downhole tool inside a well and taking a first measurement of an optical property of the received crude oil. The method also includes lowering the pressure or temperature of the crude oil after taking the first measurement of the optical property to cause aggregation of asphaltenes in the crude oil, and then separating aggregated asphaltenes from the crude oil. Further, the method includes taking a second measurement of the optical property of the crude oil within the downhole tool after separating aggregated asphaltenes from the crude oil and determining an asphaltene onset condition of the crude oil through comparison of the first and second measurements of the optical property. Additional methods, systems, and devices are also disclosed.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 27, 2017
    Inventors: John Ratulowski, Shahnawaz Molla, Vincent Sieben, Farshid Mostowfi, Shawn Taylor, Christopher Harrison, Shunsuke Fukagawa, Elizabeth Smythe, Matthew Sullivan, John Meier
  • Patent number: 9568459
    Abstract: Methods and systems for determining for determining asphaltene onset pressure of a formation fluid are described herein. The method includes the following processes: (a) transmitting light through a sample of the formation fluid; (b) decreasing pressure of the sample; (c) detecting intensity of the transmitted light during depressurization; (d) identifying a change in intensity of the transmitted light during depressurization; (e) increasing pressure of the sample to a fixed pressure; and (f) detecting intensity of the transmitted light at the fixed pressure and at an equilibrated light intensity. Processes (a) to (f) are repeated for a number of different fixed pressures. The asphaltene onset pressure of the formation fluid sample can be determined using (i) the intensity of the transmitted light during each depressurization and (ii) the intensity of the transmitted light at each of the different fixed pressures.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 14, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Matthew T. Sullivan, Christopher Harrison, Shunsuke Fukagawa, Elizabeth Smythe, John Meier
  • Publication number: 20160131630
    Abstract: Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 12, 2016
    Inventors: Youxiang Zuo, Christopher Harrison, Adriaan Gisolf, Cosan Ayan, Michael Mallari Toribio, Chetankumar Natwarlal Desai, Oliver Clinton Mullins, Matthew T. Sullivan, Elizabeth Smythe
  • Patent number: 9335273
    Abstract: A method for characterizing the dielectric response of a fluid includes receiving the fluid into a portion of a flow line that is disposed proximate to a photonic bandgap (PBG) resonant cavity so that a dielectric permittivity of the fluid affects a frequency response of the resonant cavity. The method further includes providing electromagnetic waves to the resonant cavity and measuring a frequency response of the resonant cavity in the presence of the fluid in the flow line. The method further includes determining a property of a resonant mode of the resonant cavity using the frequency response and determining a property of the fluid using the property of the resonant mode.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 10, 2016
    Inventors: Tancredi Botto, Elizabeth Smythe
  • Publication number: 20160040533
    Abstract: A method and an apparatus for characterizing a fluid including a phase transition cell to receive the fluid, a piston to control fluid pressure, a pressure gauge to measure the fluid pressure and to provide information to control the piston, and connectors to connect the cell, piston, and gauge. The exterior volume of the phase transition cell, piston, gauge, and connectors is less than about 10 liters. A method and an apparatus to characterize a fluid including observing a fluid in an phase transition cell, measuring a pressure of the fluid, and adjusting a pressure control device in response to the measuring.
    Type: Application
    Filed: February 10, 2014
    Publication date: February 11, 2016
    Inventors: Christopher Harrison, Matthew T. Sullivan, Elizabeth Smythe, Shunsuke Fukagawa, Robert J Schroeder
  • Patent number: 9249661
    Abstract: An apparatus and a method including exposing a first fluid to a pre-filter, observing the first fluid, introducing a second fluid to the first fluid, exposing the first and second fluids to a filter, and observing the first and second fluids wherein the observing the first fluid and observing the first and second fluids comprise optical measurements and the first fluid comprises material from a subterranean formation. Some embodiments may compare the optical measurements of the first fluid and the first and second fluids and/or estimate the first fluid's likelihood of forming precipitants with other fluids and/or the first fluid's asphaltene content.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: February 2, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Christopher Harrison, Farshid Mostowfi, Matthew T. Sullivan, Elizabeth Smythe, Abdel M. Kharrat
  • Publication number: 20150354345
    Abstract: Methods and systems for determining the presence and/or rate of a flow of a fluid sample include transmitting light through the fluid sample are disclosed. The methods comprise, applying a series of thermal pulses to the fluid sample, the series comprises a time interval between each thermal pulse, detecting transmitted light using a light detector; and determining at least one of (a) whether or not the fluid is flowing and (b) a flow rate of the fluid, based on an intensity of the transmitted light corresponding to at least one time interval.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 10, 2015
    Inventors: John Meier, Elizabeth Smythe, Matthew T. Sullivan, Shunsuke Fukagawa, Christopher Harrison
  • Publication number: 20150309003
    Abstract: Methods and systems for determining for determining asphaltene onset pressure of a formation fluid are described herein. The method includes the following processes: (a) transmitting light through a sample of the formation fluid; (b) decreasing pressure of the sample; (c) detecting intensity of the transmitted light during depressurization; (d) identifying a change in intensity of the transmitted light during depressurization; (e) increasing pressure of the sample to a fixed pressure; and (f) detecting intensity of the transmitted light at the fixed pressure and at an equilibrated light intensity. Processes (a) to (f) are repeated for a number of different fixed pressures. The asphaltene onset pressure of the formation fluid sample can be determined using (i) the intensity of the transmitted light during each depressurization and (ii) the intensity of the transmitted light at each of the different fixed pressures.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: MATTHEW T. SULLIVAN, CHRISTOPHER HARRISON, SHUNSUKE FUKAGAWA, ELIZABETH SMYTHE, JOHN MEIER
  • Publication number: 20150309002
    Abstract: Methods and systems for determining asphaltene onset pressure of a formation fluid are disclosed herein. The method includes positioning a wellbore tool within a wellbore and drawing a formation fluid sample into the wellbore tool. The method further includes transmitting light through the sample and detecting light that is transmitted through the sample. The light is transmitted within the sample along a short path length of less than 2 mm. While the light is being transmitted, the pressure of the sample is varied. A wavelength dependent signal is determined using (i) the intensity of the transmitted light at a first wavelength and (ii) the intensity of the transmitted light at a second wavelength. The asphaltene onset pressure of the sample is determined by identifying a change in the wavelength dependent signal at a particular pressure.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 29, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: SHUNSUKE FUKAGAWA, MATTHEW T. SULLIVAN, ELIZABETH SMYTHE, CHRISTOPHER HARRISON, JOHN MEIER
  • Patent number: 8910514
    Abstract: Systems and methods of determining fluid properties are disclosed. An example apparatus to determine a saturation pressure of a fluid includes a housing having a detection chamber and a heater assembly partially positioned within the detection chamber to heat a fluid. The example apparatus also includes a sensor assembly to detect a property of the fluid and a processor to identify a saturation pressure of the fluid using the property of the fluid.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Matthew T. Sullivan, Christopher Harrison, Robert J. Schroeder, Ahmad Latifzai, Elizabeth Smythe, Shunsuke Fukagawa, Douglas W. Grant
  • Publication number: 20140252250
    Abstract: A method for characterizing the dielectric response of a fluid includes receiving the fluid into a portion of a flow line that is disposed proximate to a photonic bandgap (PBG) resonant cavity so that a dielectric permittivity of the fluid affects a frequency response of the resonant cavity. The method further includes providing electromagnetic waves to the resonant cavity and measuring a frequency response of the resonant cavity in the presence of the fluid in the flow line. The method further includes determining a property of a resonant mode of the resonant cavity using the frequency response and determining a property of the fluid using the property of the resonant mode.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Tancredi BOTTO, Elizabeth SMYTHE
  • Publication number: 20130219997
    Abstract: Systems and methods of determining fluid properties are disclosed. An example apparatus to determine a saturation pressure of a fluid includes a housing having a detection chamber and a heater assembly partially positioned within the detection chamber to heat a fluid. The example apparatus also includes a sensor assembly to detect a property of the fluid and a processor to identify a saturation pressure of the fluid using the property of the fluid.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Inventors: Matthew T. Sullivan, Christopher Harrison, Robert J. Schroeder, Ahmad Latifzai, Elizabeth Smythe, Shunsuke Fukagawa, Douglas W. Grant