Patents by Inventor Ella Ioffe

Ella Ioffe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190284277
    Abstract: The present invention provides antibodies that bind to the T cell co-inhibitor lymphocyte activation gene 3 (LAG3) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that specifically bind to LAG3. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing LAG3 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Erica ULLMAN, Aynur HERMANN, Ella IOFFE, Elena BUROVA, Gavin THURSTON
  • Patent number: 10358495
    Abstract: The present invention provides antibodies that bind to the T cell co-inhibitor lymphocyte activation gene 3 (LAG3) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that specifically bind to LAG3. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing LAG3 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 23, 2019
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Erica Ullman, Aynur Hermann, Ella Ioffe, Elena Burova, Gavin Thurston
  • Publication number: 20190048096
    Abstract: The present invention provides antibodies that bind to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that specifically bind to CTLA-4. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing CTLA-4 activity, thus providing a means of activating T-cells and/or for treating a disease or disorder such as cancer or viral infection.
    Type: Application
    Filed: July 26, 2018
    Publication date: February 14, 2019
    Inventors: Aynur HERMANN, Ella IOFFE, Elena BUROVA, Gavin THURSTON, William OLSON
  • Publication number: 20180249689
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of an endogenous cluster of differentiation (CD) gene, in particular a humanization of a CD47 gene. Said non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD47 gene so that said non-human animals express a CD47 polypeptide that includes a human portion and a non-human portion (e.g., a murine portion).
    Type: Application
    Filed: May 17, 2018
    Publication date: September 6, 2018
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Cagan Gurer, Ella Ioffe, Alexander Mujica, Gavin Thurston
  • Publication number: 20180236070
    Abstract: The present invention provides pharmaceutical compositions comprising a VEGF antagonist and an anti-CTLA-4 antibody, and methods of use thereof. The compositions and methods of the present invention are useful for the treatment of cancers and other diseases and disorders in which anti-angiogenic therapies and/or targeted immune responses may be beneficial.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Ella IOFFE, Israel LOWY, Gavin THURSTON, Elena BUROVA
  • Patent number: 10015953
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of an endogenous cluster of differentiation (CD) gene, in particular a humanization of a CD47 gene. Said non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD47 gene so that said non-human animals express a CD47 polypeptide that includes a human portion and a non-human portion (e.g., a murine portion).
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: July 10, 2018
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Cagan Gurer, Ella Ioffe, Alexander Mujica, Gavin Thurston
  • Publication number: 20180185668
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor programmed death-1 (PD-1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-1 and a second binding specificity that binds to an autoimmune tissue antigen, another T-cell co-inhibitor, an Fc receptor, or a T-cell receptor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity, thus providing a means of treating a disease or disorder such as cancer or a chronic viral infection. In other embodiments, the antibodies are useful for enhancing or stimulating PD-1 activity, thus providing a means of treating, for example, an autoimmune disease or disorder.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Nicholas J. PAPADOPOULOS, Andrew J. MURPHY, Gavin THURSTON, Ella IOFFE, Elena BUROVA
  • Publication number: 20180186883
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor ligand programmed death-ligand1 (PD-L1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-L1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-L1 and a second binding specificity that binds to a tumor cell antigen, an infected cell-specific antigen, or a T-cell co-inhibitor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-L1 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Nicholas J. PAPADOPOULOS, Andrew J. MURPHY, Gavin THURSTON, Ella IOFFE, Elena BUROVA
  • Patent number: 9987500
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor programmed death-1 (PD-1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-1 and a second binding specificity that binds to an autoimmune tissue antigen, another T-cell co-inhibitor, an Fc receptor, or a T-cell receptor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity, thus providing a means of treating a disease or disorder such as cancer or a chronic viral infection. In other embodiments, the antibodies are useful for enhancing or stimulating PD-1 activity, thus providing a means of treating, for example, an autoimmune disease or disorder.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: June 5, 2018
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Nicholas J. Papadopoulos, Andrew J. Murphy, Gavin Thurston, Ella Ioffe, Elena Burova
  • Patent number: 9968674
    Abstract: The present invention provides pharmaceutical compositions comprising a VEGF antagonist and an anti-CTLA-4 antibody, and methods of use thereof. The compositions and methods of the present invention are useful for the treatment of cancers and other diseases and disorders in which anti-angiogenic therapies and/or targeted immune responses may be beneficial.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: May 15, 2018
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Ella Ioffe, Israel Lowy, Gavin Thurston, Elena Burova
  • Patent number: 9938345
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor ligand programmed death-ligand1 (PD-L1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-L1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-L1 and a second binding specificity that binds to a tumor cell antigen, an infected cell-specific antigen, or a T-cell co-inhibitor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-L1 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: April 10, 2018
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Nicholas J. Papadopoulos, Andrew J. Murphy, Gavin Thurston, Ella Ioffe, Elena Burova
  • Publication number: 20170101472
    Abstract: The present invention provides antibodies that bind to the T cell co-inhibitor lymphocyte activation gene 3 (LAG3) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that specifically bind to LAG3. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing LAG3 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Erica ULLMAN, Aynur HERMANN, Ella IOFFE, Elena BUROVA, Gavin THURSTON
  • Publication number: 20160345549
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of an endogenous cluster of differentiation (CD) gene, in particular a humanization of a CD47 gene. Said non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD47 gene so that said non-human animals express a CD47 polypeptide that includes a human portion and a non-human portion (e.g., a murine portion).
    Type: Application
    Filed: November 25, 2015
    Publication date: December 1, 2016
    Inventors: Cagan Gurer, Ella Ioffe, Alexander Mujica, Gavin Thurston
  • Publication number: 20160243225
    Abstract: The present invention provides pharmaceutical compositions comprising a VEGF antagonist and an anti-CTLA-4 antibody, and methods of use thereof. The compositions and methods of the present invention are useful for the treatment of cancers and other diseases and disorders in which anti-angiogenic therapies and/or targeted immune responses may be beneficial.
    Type: Application
    Filed: October 17, 2014
    Publication date: August 25, 2016
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Ella IOFFE, Israel LOWY, Gavin THURSTON, Elena BUROVA
  • Publication number: 20160157470
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of an endogenous cluster of differentiation (CD) gene, in particular a humanization of a CD47 gene. Said non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD47 gene so that said non-human animals express a CD47 polypeptide that includes a human portion and a non-human portion (e.g., a murine portion).
    Type: Application
    Filed: January 19, 2016
    Publication date: June 9, 2016
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Cagan Gurer, Ella Ioffe, Alexander Mujica, Gavin Thurston
  • Publication number: 20150203579
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor programmed death-1 (PD-1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-1 and a second binding specificity that binds to an autoimmune tissue antigen, another T-cell co-inhibitor, an Fc receptor, or a T-cell receptor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity, thus providing a means of treating a disease or disorder such as cancer or a chronic viral infection. In other embodiments, the antibodies are useful for enhancing or stimulating PD-1 activity, thus providing a means of treating, for example, an autoimmune disease or disorder.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 23, 2015
    Inventors: Nicholas J. Papadopoulos, Andrew J. Murphy, Gavin Thurston, Ella Ioffe, Elena Burova
  • Publication number: 20150203580
    Abstract: The present invention provides antibodies that bind to the T-cell co-inhibitor ligand programmed death-ligand1 (PD-L1) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-L1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-L1 and a second binding specificity that binds to a tumor cell antigen, an infected cell-specific antigen, or a T-cell co-inhibitor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-L1 activity, thus providing a means of treating a disease or disorder such as cancer or viral infection.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 23, 2015
    Inventors: Nicholas J. Papadopoulos, Andrew J. Murphy, Gavin Thurston, Ella Ioffe, Elena Burova
  • Patent number: 7812137
    Abstract: The present invention relates to identification of a receptor for a satiety factor, which is involved in body weight homeostasis. Mutations in this receptor are associated with obese phenotypes. In particular, the present invention relates to identification and characterization of the receptor for leptin, including a naturally occurring soluble form of the receptor that is expected to modulate leptin activity, in particular to agonize leptin activity. The invention further relates to the nucleic acids encoding the receptor, and to methods for using the receptor, e.g., to identify leptin analogs, therapeutically, such as in gene therapy or in soluble form as an agonist or antagonist of leptin activity, or diagnostically.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: October 12, 2010
    Assignee: The Rockefeller University
    Inventors: Jeffrey M. Friedman, Gwo-Hwa Lee, Ricardo Proenca, Ella Ioffe
  • Publication number: 20070048836
    Abstract: The present invention relates to identification of a receptor for a satiety factor, which is involved in body weight homeostasis. Mutations in this receptor are associated with obese phenotypes. In particular, the present invention relates to identification and characterization of the receptor for leptin, including a naturally occurring soluble form of the receptor that is expected to modulate leptin activity, in particular to agonize leptin activity. The invention further relates to the nucleic acids encoding the receptor, and to methods for using the receptor, e.g., to identify leptin analogs, therapeutically, such as in gene therapy or in soluble form as an agonist or antagonist of leptin activity, or diagnostically.
    Type: Application
    Filed: October 24, 2006
    Publication date: March 1, 2007
    Inventors: Jeffrey Friedman, Gwo-Hwa Lee, Ricardo Proenca, Ella Ioffe
  • Patent number: 7148004
    Abstract: The present invention relates to identification of a receptor for a satiety factor, which is involved in body weight homeostasis. Mutations in this receptor are associated with obese phenotypes. In particular, the present invention relates to identification and characterization of the receptor for leptin, including a naturally occurring soluble form of the receptor that is expected to modulate leptin activity, in particular to agonize leptin activity. The invention further relates to the nucleic acids encoding the receptor, and to methods for using the receptor, e.g., to identify leptin analogs, therapeutically, such as in gene therapy or in soluble form as an agonist or antagonist of leptin activity, or diagnostically.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: December 12, 2006
    Assignee: The Rockefeller University
    Inventors: Jeffrey M. Friedman, Gwo-Hwa Lee, Ricardo Proenca, Ella Ioffe