Patents by Inventor Elmar GEHLEN
Elmar GEHLEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11940848Abstract: An electronic device display may have pixels formed from crystalline semiconductor light-emitting diode dies, organic light-emitting diodes, or other pixel structures. The pixels may be formed on a display panel substrate. A display panel may extend continuously across the display or multiple display panels may be tiled in two dimensions to cover a larger display area. Interconnect substrates may have outwardly facing contacts that are electrically shorted to corresponding inwardly facing contacts such as inwardly facing metal pillars associated with the display panels. The interconnect substrates may be supported by glass layers. Integrated circuits may be embedded in the display panels and/or in the interconnect substrates. A display may have an active area with pixels that includes non-spline pixels in a non-spline display portion located above a straight edge of the display and spline pixel in a spline display portion located above a curved edge of the display.Type: GrantFiled: August 2, 2021Date of Patent: March 26, 2024Assignee: Apple Inc.Inventors: Elmar Gehlen, Zhen Zhang, Francois R. Jacob, Paul S. Drzaic, Han-Chieh Chang, Abbas Jamshidi Roudbari, Anshi Liang, Hopil Bae, Mahdi Farrokh Baroughi, Marc J. DeVincentis, Paolo Sacchetto, Tiffany T. Moy, Warren S. Rieutort-Louis, Yong Sun, Jonathan P. Mar, Zuoqian Wang, Ian D. Tracy, Sunggu Kang, Jaein Choi, Steven E. Molesa, Sandeep Chalasani, Jui-Chih Liao, Xin Zhao, Izhar Z. Ahmed
-
Publication number: 20230178526Abstract: Display structures and methods of manufacture of display structure including a display panel with a curved three-dimensional film contour are described. In an embodiment, a display panel includes display area with a main body area and a plurality of petals extending from the main body area. The petals are folded into a curved three-dimensional (3D) film contour, and are separated by corresponding trenches between petals. The trenches may be filled with various seam hiding materials to visually obscure the trenches.Type: ApplicationFiled: May 3, 2021Publication date: June 8, 2023Inventors: Xia Li, Tore Nauta, Gilbert Huppert, Dongwoo Shin, Hjalmar Edzer Ayco Huitema, Ruize Xu, Wei Lin, Nathan K. Gupta, Kian Kerman, Elmar Gehlen, Jin Yan, Se Hyun Ahn, Young Cheol Yang, Arnoldus Alvin Barlian, Ran He, Francois R. Jacob, Brent J. Bollman, Wei-Liang Hsu, Di Liu, Jonathan P. Mar
-
Publication number: 20220050506Abstract: An electronic device display may have pixels formed from crystalline semiconductor light-emitting diode dies, organic light-emitting diodes, or other pixel structures. The pixels may be formed on a display panel substrate. A display panel may extend continuously across the display or multiple display panels may be tiled in two dimensions to cover a larger display area. Interconnect substrates may have outwardly facing contacts that are electrically shorted to corresponding inwardly facing contacts such as inwardly facing metal pillars associated with the display panels. The interconnect substrates may be supported by glass layers. Integrated circuits may be embedded in the display panels and/or in the interconnect substrates. A display may have an active area with pixels that includes non-spline pixels in a non-spline display portion located above a straight edge of the display and spline pixel in a spline display portion located above a curved edge of the display.Type: ApplicationFiled: August 2, 2021Publication date: February 17, 2022Inventors: Elmar Gehlen, Zhen Zhang, Francois R. Jacob, Paul S. Drzaic, Han-Chieh Chang, Abbas Jamshidi Roudbari, Anshi Liang, Hopil Bae, Mahdi Farrokh Baroughi, Marc J. DeVincentis, Paolo Sacchetto, Tiffany T. Moy, Warren S. Rieutort-Louis, Yong Sun, Jonathan P. Mar, Zuoqian Wang, Ian D. Tracy, Sunggu Kang, Jaein Choi, Steven E. Molesa, Sandeep Chalasani, Jui-Chih Liao, Xin Zhao, Izhar Z. Ahmed
-
Patent number: 11217567Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: April 28, 2020Date of Patent: January 4, 2022Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10967457Abstract: A laser beam irradiation apparatus including a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: GrantFiled: October 28, 2019Date of Patent: April 6, 2021Assignees: Samsung Display Co., Ltd., Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung e.V.Inventors: Jung-Min Lee, Alexander Olowinsky, Elmar Gehlen, Heidrun Kind, Arnold Gillner
-
Publication number: 20200312824Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: ApplicationFiled: April 28, 2020Publication date: October 1, 2020Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10685940Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: April 4, 2019Date of Patent: June 16, 2020Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Publication number: 20200061737Abstract: A laser beam irradiation apparatus including a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: ApplicationFiled: October 28, 2019Publication date: February 27, 2020Inventors: Jung-Min Lee, Alexander Olowinsky, Elmar Gehlen, Heidrun Kind, Arnold Gillner
-
Patent number: 10456859Abstract: A laser beam irradiation apparatus including a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: GrantFiled: May 23, 2018Date of Patent: October 29, 2019Assignees: Samsung Display Co., Ltd., Fraunhofer Gesellschaft zur Foerderung der angewandten Forshung e.V.Inventors: Jung-Min Lee, Alexander Olowinsky, Elmar Gehlen, Heidrun Kind, Arnold Gillner
-
Publication number: 20190237444Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: ApplicationFiled: April 4, 2019Publication date: August 1, 2019Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10297581Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: July 5, 2016Date of Patent: May 21, 2019Assignee: Apple Inc.Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Publication number: 20180264589Abstract: A laser beam irradiation apparatus including a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: ApplicationFiled: May 23, 2018Publication date: September 20, 2018Inventors: Jung-Min LEE, Alexander Olowinsky, Elmar GEHLEN, Heidrun KIND, Arnold GILLNER
-
Publication number: 20180190625Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: ApplicationFiled: July 5, 2016Publication date: July 5, 2018Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10010973Abstract: Provided is a laser beam irradiation apparatus. The laser beam irradiation apparatus includes a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: GrantFiled: June 2, 2014Date of Patent: July 3, 2018Assignees: Samsung Display Co., Ltd., Fraunhofer Gesellschaft zur Forderung der angewandten Forschung e.V.Inventors: Jung-Min Lee, Alexander Olowinsky, Elmar Gehlen, Heidrun Kind, Arnold Gillner
-
Patent number: 9832868Abstract: An electronic device may have layers of glass for forming components such as a display. A display cover glass layer may overlap an array of pixels. A touch sensor may be formed under the display cover glass layer. Conductive structures such as transparent conductive electrodes or other conductive layers of material may be formed on the outer surface of the display cover glass layer. The electrodes on the outer surface of the display cover glass layer may be coupled to metal contacts and other circuitry on the inner surface of the display cover glass layer using conductive vias. Vias may be provided with barrier layers, opaque coatings, tapers, and other structures and may be formed using techniques that enhance compatibility with chemical strengthening processes.Type: GrantFiled: March 15, 2016Date of Patent: November 28, 2017Assignee: Apple Inc.Inventors: Derek W. Wright, James E. Pedder, Soyoung Kim, Stephen R. McClure, Elmar Gehlen, Sudirukkuge T. Jinasundera, Tingjun Xu, Michael Vosgueritchian, Xiaonan Wen, Wei Lin, Prithu Sharma
-
Publication number: 20140356987Abstract: Provided is a laser beam irradiation apparatus. The laser beam irradiation apparatus includes a laser source configured to emit light; a collimator configured to collimate the emitted light; a scanner configured to adjust the collimated light to change an irradiation direction thereof; a first lens part configured to focus the adjusted light to irradiate a laser beam on a sealing part; a camera configured to receive visible light passing through the scanner; a heat sensing part configured to receive infrared (IR) light passing through the scanner; and a control part configured to control a moving direction and an intensity of the laser beam.Type: ApplicationFiled: June 2, 2014Publication date: December 4, 2014Applicants: Samsung Display Co., Ltd., Fraunhofer Gesellschaft zur Forderung der angewandten Forschung e. V.Inventors: Jung-Min LEE, Alexander OLOWINSKY, Elmar GEHLEN, Heidrun KIND, Arnold GILLNER