Patents by Inventor Elmar Riesmeier

Elmar Riesmeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10487715
    Abstract: Embodiments for regeneration a particulate filter in a motor vehicle having a self-control mode for the autonomous control of a drive mode and having a diesel particulate filter disposed in the exhaust system of a diesel engine of the motor vehicle are provided. In one example, a method for protecting the diesel particulate filter from overheating and premature aging comprises: starting the self-control mode, starting/verifying a regeneration process of the diesel particulate filter with combustion of the soot particles adsorbed on the diesel particulate filter, and monitoring a temperature of the diesel particulate filter and/or of the exhaust gas directed through the diesel particulate filter during the regeneration process. Depending on a monitoring result of the monitoring, a control for the self-control mode of the motor vehicle can be adjusted.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: November 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Frederik De Smet, Christoph Boerensen, Elmar Riesmeier
  • Publication number: 20170051652
    Abstract: Embodiments for regeneration a particulate filter in a motor vehicle having a self-control mode for the autonomous control of a drive mode and having a diesel particulate filter disposed in the exhaust system of a diesel engine of the motor vehicle are provided. In one example, a method for protecting the diesel particulate filter from overheating and premature aging comprises: starting the self-control mode, starting/verifying a regeneration process of the diesel particulate filter with combustion of the soot particles adsorbed on the diesel particulate filter, and monitoring a temperature of the diesel particulate filter and/or of the exhaust gas directed through the diesel particulate filter during the regeneration process. Depending on a monitoring result of the monitoring, a control for the self-control mode of the motor vehicle can be adjusted.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 23, 2017
    Inventors: Frederik De Smet, Christoph Boerensen, Elmar Riesmeier
  • Patent number: 9217345
    Abstract: Methods and systems are provided for regenerating a particulate filter in an engine exhaust, where burning of soot is initiated by introducing additional oxygen into the exhaust gas upstream of the particulate filter where an exhaust temperature exceeds a threshold, a soot burn rate controlled by adjusting pulsing of the additional oxygen. Further, the pulsing of the additional oxygen is introduced via a high-pressure EGR passage during boosted engine conditions.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: December 22, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Ukropec, Alexey A. Dubkov, Christoph Boerensen, Elmar Riesmeier, Mario Balenovic, Brendan Patrick Carberry
  • Publication number: 20140013741
    Abstract: Methods and systems are provided for regenerating a particulate filter in an engine exhaust, where burning of soot is initiated by introducing additional oxygen into the exhaust gas upstream of the particulate filter where an exhaust temperature exceeds a threshold, a soot burn rate controlled by adjusting pulsing of the additional oxygen. Further, the pulsing of the additional oxygen is introduced via a high-pressure EGR passage during boosted engine conditions.
    Type: Application
    Filed: June 20, 2013
    Publication date: January 16, 2014
    Inventors: Robert Ukropec, Alexey A. Dubkov, Christoph Boerensen, Elmar Riesmeier, Mario Balenovic, Brendan Patrick Carberry
  • Publication number: 20080155951
    Abstract: A porous substrate is described for use as a particulate filter for catalytic or non-catalytic supported soot regeneration methods. The substrate employs catalytic and/or non-catalytic forms of soot regeneration. The substrate has a honeycomb structure and filters, during operation of the particulate filter, nanoparticles in an exhaust gas flow through the porous substrate. The porous substrate is characterized by having a cell density in the region from 200 to 300 CPSI, a wall thickness of 10 to 16 mil, a porosity of 35 to 55% and a pore size of 9 to 15 ?m.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 3, 2008
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Elmar Riesmeier, Christoph Boerensen, Alexei A. Dubkov, Gary M. Crosbie