Patents by Inventor Elsa Marisa Dos Santos Antunes

Elsa Marisa Dos Santos Antunes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9512043
    Abstract: Ceramic powders are coated with a layer of nanoparticles of multiple crystalline structures. These coatings can be obtained by means of the introduction of precursors in water in oil emulsions, which upon decomposition during its detonation, form the nanoparticles that adhere to the surface of the ceramic powder intended to coat. The later base ceramic powder can be synthesized during the emulsion detonation (W/O) or simply be directly placed in its composition. The properties of the obtained coating, such as thickness, adhesion, porosity and coated surface percentage, can be adjusted.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: December 6, 2016
    Assignee: INNOVNANO-MATERIAIS AVANCADOS, S.A.
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Publication number: 20160145117
    Abstract: The present invention refers to nanocrystaline spherical ceramic oxides, to the process for the synthesis and use thereof. These oxides, obtained by detonation of a water-in-oil emulsion (W/O), besides having a spherical morphology and nanocrystallinity, show a set of complementary features, namely a particle dimension inferior to 40 ?m, bimodal particle size distribution, high purity, deagglomeration and stable crystalline stages. This set of features makes these powders particularly suitable for several applications such as coating processes, near net shape processes and, when applied in ceramics industry, they provide dense and porous ceramic objects of exceptionally high mechanical resistance.
    Type: Application
    Filed: January 7, 2016
    Publication date: May 26, 2016
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Patent number: 9249020
    Abstract: The present invention refers to nanocrystalline spherical ceramic oxides, to the process for the synthesis and use thereof. These oxides, obtained by detonation of a water-in-oil emulsion (W/O), besides having a spherical morphology and nanocrystallinity, show a set of complementary features, namely a particle dimension inferior to 40 ?m, bimodal particle size distribution, high purity, deagglomeration and stable crystalline stages. This set of features makes these powders particularly suitable for several applications such as coating processes, near net shape processes and, when applied in ceramics industry, they provide dense and porous ceramic objects of exceptionally high mechanical resistance.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 2, 2016
    Assignee: CUF-COMPANHIA UNIAO FABRIL, SGPS, S.A.
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Patent number: 9115001
    Abstract: The present invention refers to a nanomaterial synthesis process from the decomposition and subsequent reaction among common and economical insoluble precursors, or precursors which hydrolyze in contact with water, which are incorporated in the internal phase of an emulsion. These insoluble precursors are introduced in the internal phase of an emulsion, then being subject to decomposition and subsequent reaction in the solid state, under shockwave effect during the detonation of the emulsion, the nanomaterial with the intended structure being in the end obtained. The process of the present invention therefore allows obtaining a wide range of nanomaterial as composites or binary, ternary structures or higher structures, with small-sized homogenous primary particles, applicable to several technological fields.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: August 25, 2015
    Assignee: Innovnano—Materiais A vançados, S.A.
    Inventors: Elsa Marisa Dos Santos Antunes, João Manuel Calado Da Silva, Ana Lúcia Costa Lagoa
  • Patent number: 8557215
    Abstract: The disclosed subject concerns nanometric-sized ceramic materials in the form of multiple crystalline structures, composites, or solid solutions, the process for their synthesis, and uses thereof. These materials are mainly obtained by detonation of two water-in-oil (W/O) emulsions, one of which is prepared with precursors in order to present a detonation regime with temperature lower than 2000° C., and they present a high chemical and crystalline phase homogeneity, individually for each particle, as well as a set of complementary properties adjustable according to the final applications, such as a homogeneous distribution of the primary particles, very high chemical purity level, crystallite size below 50 nm, surface areas by mass unit between 25 and 500 m2/g, and true particle densities higher than 98% of the theoretical density.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: October 15, 2013
    Assignee: Innovnano—Materiais Avançados, S.A.
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Publication number: 20130224488
    Abstract: The present invention refers to a nanomaterial synthesis process from the decomposition and subsequent reaction among common and economical insoluble precursors, or precursors which hydrolyze in contact with water, which are incorporated in the internal phase of an emulsion. These insoluble precursors are introduced in the internal phase of an emulsion, then being subject to decomposition and subsequent reaction in the solid state, under shockwave effect during the detonation of the emulsion, the nanomaterial with the intended structure being in the end obtained. The process of the present invention therefore allows obtaining a wide range of nanomaterial as composites or binary, ternary structures or higher structures, with small-sized homogenous primary particles, applicable to several technological fields.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 29, 2013
    Applicant: INNOVNANO - MATERIAIS AVANCADOS, S.A.
    Inventors: Elsa Marisa Dos Santos Antunes, João Manuel Calado Da Silva, Ana Lúcia Costa Lagoa
  • Publication number: 20110183833
    Abstract: The disclosed subject matter relates to ceramic powders coated with a layer of nanoparticles of multiple crystalline structures and processes for obtaining the same. These coatings can be obtained by means of the introduction of precursors in water in oil emulsions, which upon decomposition during its detonation, form the nanoparticles that adhere to the surface of the ceramic powder intended to coat. The later base ceramic powder can be synthesized during the emulsion detonation (W/O) or simply be directly placed in its composition. The properties of the obtained coating, such as thickness, adhesion, porosity and coated surface percentage, can be adjusted according to the application desired. The ceramic powders coated can applicable to several types of areas of nanotechnology, such as electronics, biomedicine, chemistry, ceramics, energy industries, and the like.
    Type: Application
    Filed: October 13, 2008
    Publication date: July 28, 2011
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Publication number: 20110129670
    Abstract: The disclosed subject concerns nanometric-sized ceramic materials in the form of multiple crystalline structures, composites, or solid solutions, the process for their synthesis, and uses thereof. These materials are mainly obtained by detonation of two water-in-oil (W/O) emulsions, one of which is prepared with precursors in order to present a detonation regime with temperature lower than 2000° C., and they present a high chemical and crystalline phase homogeneity, individually for each particle, as well as a set of complementary properties adjustable according to the final applications, such as a homogeneous distribution of the primary particles, very high chemical purity level, crystallite size below 50 nm, surface areas by mass unit between 25 and 500 m2/g, and true particle densities higher than 98% of the theoretical density.
    Type: Application
    Filed: May 26, 2009
    Publication date: June 2, 2011
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes