Patents by Inventor Elton Marchena

Elton Marchena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220171125
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening, such that the active region of the chip is aligned with the device layer of the platform.
    Type: Application
    Filed: November 5, 2021
    Publication date: June 2, 2022
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20220075130
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Application
    Filed: May 7, 2021
    Publication date: March 10, 2022
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Elton Marchena, Amit Mizrahi, Derek Van Orden
  • Patent number: 11183492
    Abstract: Fabricating a multilevel composite semiconductor structure includes providing a first substrate comprising a first material; dicing a second substrate to provide a plurality of dies; mounting the plurality of dies on a third substrate; joining the first substrate and the third substrate to form a composite structure; and joining a fourth substrate and the composite structure.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 23, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Elton Marchena, John Dallesasse
  • Patent number: 11181688
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermetically seals the chip in the platform.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: November 23, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 11002925
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: May 11, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick
  • Publication number: 20200041732
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Application
    Filed: April 8, 2019
    Publication date: February 6, 2020
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick
  • Patent number: 10330871
    Abstract: A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 25, 2019
    Assignee: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Timothy Creazzo, Elton Marchena, Derek Van Orden, Stephen B. Krasulick
  • Patent number: 10200131
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: February 5, 2019
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Publication number: 20180331765
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Application
    Filed: April 6, 2018
    Publication date: November 15, 2018
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Publication number: 20180308834
    Abstract: Fabricating a multilevel composite semiconductor structure includes providing a first substrate comprising a first material; dicing a second substrate to provide a plurality of dies; mounting the plurality of dies on a third substrate; joining the first substrate and the third substrate to form a composite structure; and joining a fourth substrate and the composite structure.
    Type: Application
    Filed: February 20, 2018
    Publication date: October 25, 2018
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Elton Marchena, John Dallesasse
  • Patent number: 9960854
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 1, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Patent number: 9923105
    Abstract: A method for fabricating a photonic composite device for splitting functionality across materials comprises providing a composite device having a platform and a chip bonded in the platform. The chip is processed comprising patterning, etching, deposition, and/or other processing steps while the chip is bonded to the platform. The chip is used as a gain medium and the platform is at least partially made of silicon.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: March 20, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9885832
    Abstract: A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 6, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Damien Lambert, Nikhil Kumar, Elton Marchena, Daming Liu, Guoliang Li, John Zyskind
  • Patent number: 9882073
    Abstract: A composite photonic device comprises a platform, a chip, and a contact layer. The platform comprises silicon. The chip is made of a III-V material. The contact layer has indentations to help control a flow of solder during bonding of the platform with the chip. In some embodiments, pedestals are placed under an optical path to prevent solder from flowing between the chip and the platform at the optical path.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 30, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Publication number: 20170201325
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Application
    Filed: September 23, 2016
    Publication date: July 13, 2017
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi, Robert J. Stone
  • Patent number: 9659993
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: May 23, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Patent number: 9568750
    Abstract: An optical modulator includes an input port, a first waveguide region comprising silicon and optically coupled to the input port, and a waveguide splitter optically coupled to the first waveguide region and having a first output and a second output. The optical modulator also includes a first phase adjustment section optically coupled to the first output and comprising a first III-V diode and a second phase adjustment section optically coupled to the second output and comprising a second III-V diode. The optical modulator further includes a waveguide coupler optically coupled to the first phase adjustment section and the second phase adjustment section, a second waveguide region comprising silicon and optically coupled to the waveguide coupler, and an output port optically coupled to the second waveguide region.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: February 14, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Y. Spann, Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Elton Marchena, Robert J. Stone, Stephen B. Krasulick
  • Patent number: 9496431
    Abstract: A method for fabricating a composite device comprises providing a platform, providing a chip, and bonding the chip to the platform. The platform has a base layer and a device layer above the base layer. An opening in the device layer exposes a portion of the base layer. The chip is bonded to the portion of the base layer exposed by the opening in the device layer. A portion of the chip extends above the platform and is removed.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: November 15, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9479262
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 25, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Publication number: 20160274319
    Abstract: A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermetically seals the chip in the platform.
    Type: Application
    Filed: March 18, 2016
    Publication date: September 22, 2016
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann