Patents by Inventor Elvira Favoino

Elvira Favoino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11078260
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 3, 2021
    Assignee: University of Pittsburgh—Of The Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Publication number: 20180230205
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Application
    Filed: January 12, 2018
    Publication date: August 16, 2018
    Applicant: University of Pittsburgh - Of The Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Patent number: 9902766
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: February 27, 2018
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Publication number: 20160207990
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Application
    Filed: April 6, 2016
    Publication date: July 21, 2016
    Applicant: University of Pittsburgh - Of The Commonwealth Sys tem of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Patent number: 9340608
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 17, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Patent number: 9296811
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds high molecular weight melanoma associated antigen (HMW-MAA), also known as CSPG4; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 29, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Publication number: 20140234324
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds glucose regulated protein (GRP) 94; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 21, 2014
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Patent number: 8771687
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds glucose regulated protein (GRP) 94; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 8, 2014
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Publication number: 20140010811
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Applicant: University of Pittsburgh - Of The Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Publication number: 20130259873
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds high molecular weight melanoma associated antigen (HMW-MAA), also known as CSPG4; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Application
    Filed: December 1, 2011
    Publication date: October 3, 2013
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Patent number: 8497354
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: July 30, 2013
    Assignee: University of Pittsburgh—Of The Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Publication number: 20120148598
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds glucose regulated protein (GRP) 94; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 14, 2012
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Publication number: 20120009194
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Application
    Filed: June 15, 2011
    Publication date: January 12, 2012
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood