Patents by Inventor Emad Andarawis

Emad Andarawis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210072175
    Abstract: A monolithic gas-sensing chip assembly for sensing a gas analyte includes a sensing material to detect the gas analyte, a sensing system including a resistor-capacitor electrical circuit, and a heating element. A sensing circuit measures an electrical response of the sensing system to an alternating electrical current applied to the sensing system at (a) one or more different frequencies, or (b) one or more different resistor-capacitor configurations of the system. One or more processors control a low detection range of the system to the gas, a high detection range of the system to the gas, a linearity of a response of the system to the gas, a dynamic range of measurements of the gas by the system, a rejection of interfering gas analytes by the system, a correction for aging or poisoning of the system, or a rejection of ambient interferences that may affect the electrical response of the system.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Emad Andarawis Andarawis, Naresh Kesavan Rao
  • Publication number: 20210063366
    Abstract: A sensor system includes an electrical circuit having plural leads coupled with one or more sensing regions. The sensing regions include gaps having sensing materials that detect an analyte of interest. The gaps close responsive to the sensing material corresponding to the gaps detecting the analyte of interest. One or more processors communicatively coupled with the electrical circuit receive electrical signals from the electrical circuit indicative of the gaps closing responsive to the sensing material of the corresponding gaps detecting the analyte of interest. The electrical circuit is in a closed position in the presence of the analyte of interest. The sensor system is configured to consume an increased amount of power when the electrical circuit is in the closed position relative to the electrical circuit in an open position responsive to the one or more of the gaps closing. A responsive action is determined based on the electrical signals.
    Type: Application
    Filed: May 15, 2019
    Publication date: March 4, 2021
    Inventors: Radislav Alexandrovich Potyrailo, Richard St. Pierre, Emad Andarawis Andarawis
  • Patent number: 10798282
    Abstract: A device for detecting proximity to an active alternating current (AC) voltage source is provided. The device includes a housing, at least one antenna configured to generate a signal in response to exposure to electromagnetic radiation, signal processing circuitry configured to process the signal generated by the at least one antenna, a microprocessor configured to determine, from the processed signal, whether the alert device is proximate to the active AC voltage source, a communication device configured to generate a signal in response to a determination that the alert device is proximate the active AC voltage source, and an interference reduction device configured to discharge an accumulated charge on the alert device to reduce electromagnetic interference from sources other than the active AC voltage source.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 6, 2020
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Mark Bradshaw Kraeling, Glenn Robert Shaffer, Emad Andarawis Andarawis, Glen William Brooksby, Christopher Gushee, Jeffrey Mayton, Cheng-Po Chen, Nancy Cecelia Stoffel, Wyatt Smith, Jose Luis R. Virgen, Daniel L. Olson
  • Patent number: 10749961
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, S M Shajedul Hasan
  • Patent number: 10739318
    Abstract: A detection system includes a first sensor configured to send a first ultrasonic pulse toward an object in a blowout prevention system. The first ultrasonic pulse has a first parameter. The detection system also includes a second sensor spaced from the first sensor and configured to send a second ultrasonic pulse toward the object. The second ultrasonic pulse has a second parameter that is different from the first parameter of the first ultrasonic pulse. The first parameter and the second parameter are one of an amplitude, a frequency, a duration, an emission time, and an excitation code. The second sensor is further configured to receive the first ultrasonic pulse after the first ultrasonic pulse interacts with the object. The detection system is configured to determine that the first ultrasonic pulse received by the second sensor was sent by the first sensor.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: August 11, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Dayu Huang, Emad Andarawis Andarawis, Edward James Nieters, Cheng-Po Chen, Marco Guerriero
  • Patent number: 10488174
    Abstract: A voltage detection device for detecting proximity to an active alternating current (AC) voltage source is provided. The device includes a housing, at least one antenna configured to generate a signal in response to exposure to electromagnetic radiation, signal processing circuitry configured to process the signal generated by the at least one antenna, a processing device embedded in the housing and communicatively coupled to the signal processing circuitry, the processing device configured to determine, from the processed signal, whether the voltage detection device is proximate to the active AC voltage source, and an electronic switch embedded in the housing and one of included within the processing device and communicatively coupled to the processing device, the electronic switch configured to reduce an impact of interference on detection of the active AC voltage source.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 26, 2019
    Assignee: General Electric Company
    Inventors: Cheng-Po Chen, Christopher Bruce Gushee, Jose Luis Virgen, Emad Andarawis Andarawis, Glen William Brooksby, Jeffrey Ross Mayton, Nancy Cecelia Stoffel, Wyatt Beale Smith, Daniel Leroy Olson
  • Publication number: 20190277617
    Abstract: A voltage detection device for detecting proximity to an active alternating current (AC) voltage source is provided. The device includes a housing, at least one antenna configured to generate a signal in response to exposure to electromagnetic radiation, signal processing circuitry configured to process the signal generated by the at least one antenna, a processing device embedded in the housing and communicatively coupled to the signal processing circuitry, the processing device configured to determine, from the processed signal, whether the voltage detection device is proximate to the active AC voltage source, and an electronic switch embedded in the housing and one of included within the processing device and communicatively coupled to the processing device, the electronic switch configured to reduce an impact of interference on detection of the active AC voltage source.
    Type: Application
    Filed: March 6, 2018
    Publication date: September 12, 2019
    Inventors: Cheng-Po Chen, Christopher Bruce Gushee, Jose Luis Virgen, Emad Andarawis Andarawis, Glen William Brooksby, Jeffrey Ross Mayton, Nancy Cecelia Stoffel, Wyatt Beale Smith, Daniel Leroy Olson
  • Publication number: 20190222651
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, SM Shajedul Hasan
  • Publication number: 20190149715
    Abstract: A device for detecting proximity to an active alternating current (AC) voltage source is provided. The device includes a housing, at least one antenna configured to generate a signal in response to exposure to electromagnetic radiation, signal processing circuitry configured to process the signal generated by the at least one antenna, a microprocessor configured to determine, from the processed signal, whether the alert device is proximate to the active AC voltage source, a communication device configured to generate a signal in response to a determination that the alert device is proximate the active AC voltage source, and an interference reduction device configured to discharge an accumulated charge on the alert device to reduce electromagnetic interference from sources other than the active AC voltage source.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Mark Bradshaw Kraeling, Glenn Robert Shaffer, Emad Andarawis Andarawis, Glen William Brooksby, Christopher Gushee, Jeffrey Mayton, Cheng-Po Chen, Nancy Cecelia Stoffel, Wyatt Smith, Jose Luis R. Virgen, Daniel L. Olson
  • Publication number: 20190101879
    Abstract: A monitoring system for an aircraft.
    Type: Application
    Filed: September 19, 2018
    Publication date: April 4, 2019
    Applicant: Lockheed Martin Corporation
    Inventors: Ertugrul Berkcan, Emad Andarawis, Eladio Delgado, Samantha Rao
  • Patent number: 10218791
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, S M Shajedul Hasan
  • Publication number: 20180306750
    Abstract: A detection system includes a first sensor configured to send a first ultrasonic pulse toward an object in a blowout prevention system. The first ultrasonic pulse has a first parameter. The detection system also includes a second sensor spaced from the first sensor and configured to send a second ultrasonic pulse toward the object. The second ultrasonic pulse has a second parameter that is different from the first parameter of the first ultrasonic pulse. The first parameter and the second parameter are one of an amplitude, a frequency, a duration, an emission time, and an excitation code. The second sensor is further configured to receive the first ultrasonic pulse after the first ultrasonic pulse interacts with the object. The detection system is configured to determine that the first ultrasonic pulse received by the second sensor was sent by the first sensor.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Inventors: Dayu Huang, Emad Andarawis Andarawis, Edward James Nieters, Cheng-Po Chen, Marco Guerriero
  • Publication number: 20180306026
    Abstract: A detection system to detect an object in a blowout prevention system of a production system includes a sensor coupled to the blowout prevention system and configured to send an ultrasonic pulse toward the object. The sensor is further configured to receive a signal including the ultrasonic pulse and noise after the ultrasonic pulse interacts with the object. The detection system also includes a controller coupled to the sensor and configured to identify the ultrasonic pulse in the signal using a first cancellation signal at a first time and a second cancellation signal at a second time. The controller is further configured to determine that the first cancellation signal corresponds to the noise in the signal at the first time, and determine that the second cancellation signal corresponds to the noise in the signal at the second time. The controller is configured to determine a characteristic of the object based on the ultrasonic pulse.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 25, 2018
    Inventors: Edward James Nieters, Emad Andarawis Andarawis, Dayu Huang, Jayakrishnan Unnikrishnan
  • Publication number: 20180252092
    Abstract: A sensor system for a sub-sea oil and gas well includes a casing, a transmit coil, a receive coil, and a processor. The casing defines an interior space through which a drilling pipe string transits. The transmit coil is coupled to the casing and is configured to conduct a current pulse and induce an electromagnetic field within the interior space. The electromagnetic field corresponds with the current pulse and interacts with the drilling pipe string. The receive coil is coupled to the casing and is configured to detect the electromagnetic field, including perturbations of the electromagnetic field due to the drilling pipe string's interaction therewith. The processor is coupled to the transmit coil and the receive coil. The processor is configured to compute a diameter of the drilling pipe string based on the current pulse and the electromagnetic field detected by the receive coil.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: Yuri Alexeyevich Plotnikov, Cheng-Po Chen, Steven Klopman, Emad Andarawis Andarawis, Gregory Jay Myers
  • Patent number: 9801564
    Abstract: A system and method for determining physiological parameters based on electrical impedance measurements is provided. One method includes obtaining electrical measurement signals acquired from a plurality of transducers coupled to a surface of an object and spatially pre-conditioning the obtained electrical measurement signals. The method also includes performing multiple-input-multiple-output (MIMO) analog to information conversion (AIC) of the spatially pre-conditioned electrical measurement signals to correlate the spatially pre-conditioned electrical measurement signals to separate the electrical measurement signals.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Amit Satish Gore, Jeffrey Michael Ashe, Emad Andarawis Andarawis
  • Patent number: 9722626
    Abstract: An analog-to-digital converter (ADC) is provided includes a first sigma-delta modulator (SDM) electrically coupled to a first signal input. The first SDM includes a first summing junction configured to receive a plurality of inputs to the first SDM. The ADC further includes a second sigma-delta modulator (SDM) electrically coupled to a second signal input. The second SDM includes a second summing junction configured to receive a plurality of inputs to the second SDM. The first SDM also includes a cross-coupled feedback loop from an output of the first SDM to a negative input of the first summing junction and to a positive input of the second summing junction. The second SDM also includes a cross-coupled feedback loop from an output of the second SDM to a negative input of the first summing junction and to a negative input of the second summing junction.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: August 1, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Amit Satish Gore, Emad Andarawis Andarawis, Naresh Kesavan Rao
  • Publication number: 20170187541
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 29, 2017
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, SM Shajedul Hasan
  • Patent number: 9416649
    Abstract: A system to detect a position of a pipe with respect to a BOP includes a casing disposed around an outer surface of a section of the pipe. The system further includes sensing devices that are disposed on the casing and arranged to form a plurality of arrays and configured to generate position signals. The arrays are disposed circumferentially around the casing and spaced from one another along the length of the casing. The system includes a processing unit configured to compute distance between the pipe and each sensing device. The processing unit generates a first alert when the distance between the pipe and at least one sensing device is different from a reference distance. The processing unit generates a second alert when the distance between the pipe and each sensing device of at least one array of sensing devices is different from the reference distance.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: August 16, 2016
    Assignee: General Electric Company
    Inventors: Emad Andarawis Andarawis, Daniel White Sexton, Christopher Edward Wolfe, Edward James Nieters, Yuri Alexeyevich Plotnikov, Michael Joseph Dell'Anno
  • Patent number: 9417048
    Abstract: A capacitive sensor device and a method of manufacture are provided. The capacitive sensor device includes at least one sensor tip that includes an electrode positioned at a first end of the sensor tip, and a stem member coupled to the electrode and extending toward a second end of the sensor tip. The device also includes a coaxial cable including a center conductor, the center conductor coupled to the sensor tip at the second end, and an insulation layer supporting the sensor tip between the first and second ends. The insulation layer includes a metallization on a portion surrounding the second end of the sensor tip. The device further includes a casing surrounding a portion of the coaxial cable, the metallization, and the coupling of the center conductor and the sensor tip, wherein a braze joint is formed between the casing and the metallization to form a hollow, hermetic cavity.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 16, 2016
    Assignee: General Electric Company
    Inventors: David Richard Esler, Emad Andarawis Andarawis, Wayne Charles Hasz, Mahadevan Balasubramaniam
  • Patent number: 9388744
    Abstract: In one embodiment, a gas turbine engine control system includes an engine controller configured to control multiple parameters associated with operation of a gas turbine engine system. The gas turbine engine control system also includes multiple remote interface units communicatively coupled to the engine controller. The remote interface unit is configured to receive an input signal from the engine controller indicative of respective target values of at least one parameter, and the remote interface unit is configured to provide closed-loop control of the at least one parameter based on the input signal and feedback signals indicative of respective measured values of the at least one parameter.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 12, 2016
    Assignee: General Electric Company
    Inventors: Harry Kirk Mathews, Jr., Brent Jerome Brunell, Simon Shlomo Lis, R. Sheldon Carpenter, Samhita Dasgupta, Sridhar Adibhatla, Scott Douglas Waun, Emad Andarawis Andarawis