Patents by Inventor Emad Naji Al-Shafei

Emad Naji Al-Shafei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10947461
    Abstract: The present invention provides selective extraction of sulfoxides, or sulfoxides in combination with sulfones, from hydrocarbon mixtures containing these compounds. A significant advantage of the invention is that oxidation products resulting from oxidative desulfurization of hydrocarbon feedstocks are selectively extracted with minimum co-extraction of non-oxidized products such as valuable hydrocarbon fuel components.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 16, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Emad Naji Al-Shafei, Esam Zaki Hamad
  • Patent number: 10843930
    Abstract: Systems and methods for production of consistently-sized ZSM-22 zeolite catalyst crystals, a method including preparing an aluminate solution; preparing a silica solution; mixing the aluminate solution and the silica solution to form a zeolite-forming solution; heating the zeolite solution with microwave irradiation in a first, a second, a third, and a fourth distinct isothermal stage to produce the consistently-sized ZSM-22 zeolite catalyst crystals within a pre-selected crystal size range using a non-ionic surfactant.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: November 24, 2020
    Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Emad Naji Al-Shafei, Oki Muraza, Anas Karrar Jamil, Ki-Hyouk Choi, Zain Hassan Yamani
  • Publication number: 20190284487
    Abstract: The present invention provides selective extraction of sulfoxides, or sulfoxides in combination with sulfones, from hydrocarbon mixtures containing these compounds. A significant advantage of the invention is that oxidation products resulting from oxidative desulfurization of hydrocarbon feedstocks are selectively extracted with minimum co-extraction of non-oxidized products such as valuable hydrocarbon fuel components.
    Type: Application
    Filed: March 27, 2019
    Publication date: September 19, 2019
    Inventors: Emad Naji Al-Shafei, Esam Zaki Hamad
  • Patent number: 10350515
    Abstract: A dynamic demulsification system to facilitate the removal of water from oil for use in a gas-oil separation plant (GOSP) which has a dehydrator vessel in fluid communication with a desalter vessel which in turn is in fluid communication with a water/oil separator vessel includes the following system components: an in-line microwave treatment subsystem upstream of one or two of each of the dehydrator vessel, the desalter vessel and the water/oil separator vessel, each of which vessels receives a water-oil emulsion; a sensor for the real-time monitoring and transmission of data representing one or more properties of the water-oil emulsion in the respective vessel(s) and/or downstream of the respective vessel(s) with which the sensor is associated; and a processor/controller that receives the data from the sensor and transmits one or more signals to the one or both of the respective in-line microwave treatment subsystem(s) to generate and apply microwave energy of predetermined characteristics to the flowing
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: July 16, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Emad Naji Al-Shafei, M. Rashid Khan
  • Publication number: 20170136388
    Abstract: A dynamic demulsification system to facilitate the removal of water from oil for use in a gas-oil separation plant (GOSP) which has a dehydrator vessel in fluid communication with a desalter vessel which in turn is in fluid communication with a water/oil separator vessel includes the following system components: an in-line microwave treatment subsystem upstream of one or two of each of the dehydrator vessel, the desalter vessel and the water/oil separator vessel, each of which vessels receives a water-oil emulsion; a sensor for the real-time monitoring and transmission of data representing one or more properties of the water-oil emulsion in the respective vessel(s) and/or downstream of the respective vessel(s) with which the sensor is associated; and a processor/controller that receives the data from the sensor and transmits one or more signals to the one or both of the respective in-line microwave treatment subsystem(s) to generate and apply microwave energy of predetermined characteristics to the flowing
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Emad Naji AL-SHAFEI, M. Rashid KHAN
  • Patent number: 9555345
    Abstract: A dynamic water/oil demulsification system for a gas-oil separation plant (GOSP) includes: an in-line microwave treatment subsystem upstream of one or more of each of a dehydrator vessel, desalter vessel and/or water/oil separator vessel, each of which vessels receives a water-oil emulsion; sensors that monitor and transmit data corresponding to properties of the water-oil emulsion in or downstream of the respective vessel(s); and a processor/controller associated with the in-line microwave treatment subsystem that initiates the application of microwave energy to the emulsion(s) based on the data from the sensors.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: January 31, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Emad Naji Al-Shafei, M. Rashid Khan
  • Publication number: 20160244679
    Abstract: The present invention provides selective extraction of sulfoxides, or sulfoxides in combination with sulfones, from hydrocarbon mixtures containing these compounds. A significant advantage of the invention is that oxidation products resulting from oxidative desulfurization of hydrocarbon feedstocks are selectively extracted with minimum co-extraction of non-oxidized products such as valuable hydrocarbon fuel components.
    Type: Application
    Filed: March 21, 2016
    Publication date: August 25, 2016
    Inventors: Emad Naji Al-Shafei, Esam Zaki Hamad
  • Patent number: 9394491
    Abstract: Hydrocarbon feedstocks are desulfurized by conversion of organosulfur compounds in a mixture of hydrocarbons into sulfoxides and/or sulfones. The oxidant used to promote oxidation of organosulfur-compounds is electrosynthesized in-situ.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: July 19, 2016
    Assignee: Saudi Arabian Oil Company
    Inventor: Emad Naji Al-Shafei
  • Publication number: 20150001134
    Abstract: Hydrocarbon feedstocks are desulfurized by conversion of organosulfur compounds in a mixture of hydrocarbons into sulfoxides and/or sulfones. The oxidant used to promote oxidation of organosulfur-compounds is electrosynthesized in-situ.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventor: Emad Naji AL-SHAFEI
  • Patent number: 8871951
    Abstract: Hydrocarbon feedstocks are desulfurized by conversion of organosulfur compounds in a mixture of hydrocarbons into sulfoxides and/or sulfones. The oxidant used to promote oxidation of organosulfur-compounds is electrosynthesized in-situ.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 28, 2014
    Assignee: Saudi Arabian Oil Company
    Inventor: Emad Naji Al-Shafei
  • Patent number: 8807214
    Abstract: Heavy crude oils having high sulfur content and viscosities are upgraded by a hydrodesulfurization (HDS) process that includes microwave irradiation of a mixture of the sour heavy crude oil with at least one catalyst and optionally, one or more sensitizers, and irradiation in the presence of hydrogen. The process is also adapted to microwave treatment of hard to break emulsions, either above ground or below ground where water-in-oil emulsions are initially formed, followed by the catalytic hydrodesulfurization promoted by application of further microwave energy to the demulsified crude oil stream.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: August 19, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: M. Rashid Khan, Emad Naji Al-Shafei
  • Publication number: 20130341247
    Abstract: Heavy crude oils having high sulfur content and viscosities are upgraded by a hydrodesulfurization (HDS) process that includes microwave irradiation of a mixture of the sour heavy crude oil with at least one catalyst and optionally, one or more sensitizers, and irradiation in the presence of hydrogen. The process is also adapted to microwave treatment of hard to break emulsions, either above ground or below ground where water-in-oil emulsions are initially formed, followed by the catalytic hydrodesulfurization promoted by application of further microwave energy to the demulsified crude oil stream.
    Type: Application
    Filed: March 22, 2013
    Publication date: December 26, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: M. Rashid Khan, Emad Naji Al-Shafei
  • Patent number: 8403043
    Abstract: Heavy crude oils having high sulfur content and viscosities are upgraded by a hydrodesulfurization (HDS) process that includes microwave irradiation of a mixture of the sour heavy crude oil with at least one catalyst and optionally, one or more sensitizers, and irradiation in the presence of hydrogen. The process is also adapted to microwave treatment of hard to break emulsions, either above ground or below ground where water-in-oil emulsions are initially formed, followed by the catalytic hydrodesulfurization promoted by application of further microwave energy to the demulsified crude oil stream.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 26, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Rashid M. Khan, Emad Naji Al-Shafei
  • Publication number: 20130053578
    Abstract: Hydrocarbon feedstocks are desulfurized by conversion of organosulfur compounds in a mixture of hydrocarbons into sulfoxides and/or sulfones. The oxidant used to promote oxidation of organosulfur-compounds is electrosynthesized in-situ.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 28, 2013
    Inventor: Emad Naji Al-Shafei
  • Publication number: 20130026082
    Abstract: A dynamic water/oil demulsification system for a gas-oil separation plant (GOSP) includes: an in-line microwave treatment subsystem upstream of one or more of each of a dehydrator vessel, desalter vessel and/or water/oil separator vessel, each of which vessels receives a water-oil emulsion; sensors that monitor and transmit data corresponding to properties of the water-oil emulsion in or downstream of the respective vessel(s); and a processor/controller associated with the in-line microwave treatment subsystem that initiates the application of microwave energy to the emulsion(s) based on the data from the sensors.
    Type: Application
    Filed: June 13, 2012
    Publication date: January 31, 2013
    Inventors: Emad Naji AL-SHAFEI, M. Rashid Khan
  • Patent number: 8343336
    Abstract: A high sulfur content crude oil feedstream is treated by mixing one or more selected solvents with a sulfur-containing crude oil feedstream for a predetermined period of time, allowing the mixture to separate and form a sulfur-rich solvent-containing liquid phase and a crude oil phase of substantially lowered sulfur content, withdrawing the sulfur-rich stream and regenerating the solvent, hydrotreating the remaining sulfur-rich stream to remove or substantially reduce the sulfur-containing compounds to provide a hydrotreated low sulfur content stream, and mixing the hydrotreated stream with the separated crude oil phase to thereby provide a treated crude oil product stream of substantially reduced sulfur content and without significant volume loss.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 1, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Esam Zaki Hamad, Emad Naji Al-Shafei, Ali Salim Al-Qahtani
  • Publication number: 20100288494
    Abstract: Heavy crude oils having high sulfur content and viscosities are upgraded by a hydrodesulfurization (HDS) process that includes microwave irradiation of a mixture of the sour heavy crude oil with at least one catalyst and optionally, one or more sensitizers, and irradiation in the presence of hydrogen. The process is also adapted to microwave treatment of hard to break emulsions, either above ground or below ground where water-in-oil emulsions are initially formed, followed by the catalytic hydrodesulfurization promoted by application of further microwave energy to the demulsified crude oil stream.
    Type: Application
    Filed: November 14, 2008
    Publication date: November 18, 2010
    Inventors: Rashid M. Khan, Emad Naji Al-Shafei
  • Publication number: 20090107890
    Abstract: A high sulfur content crude oil feedstream is treated by mixing one or more selected solvents with a sulfur-containing crude oil feedstream for a predetermined period of time, allowing the mixture to separate and form a sulfur-rich solvent-containing liquid phase and a crude oil phase of substantially lowered sulfur content, withdrawing the sulfur-rich stream and regenerating the solvent, hydrotreating the remaining sulfur-rich stream to remove or substantially reduce the sulfur-containing compounds to provide a hydrotreated low sulfur content stream, and mixing the hydrotreated stream with the separated crude oil phase to thereby provide a treated crude oil product stream of substantially reduced sulfur content and without significant volume loss.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Esam Zaki Hamad, Emad Naji Al-Shafei, Ali Salim Al-Qahtani