Patents by Inventor Emanuel Mordechai

Emanuel Mordechai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240089569
    Abstract: An image sensing device includes a detector assembly, which includes a matrix of optical sensing elements having a predefined pitch. Each optical sensing element includes an active area having a width that is less than 90% of the pitch. An array of optical apertures are respectively aligned with the optical sensing elements such that each optical aperture is positioned at a distance from a respective optical sensing element that is no less than twice the width of the active area. Objective optics are configured to focus light from a scene onto the detector assembly.
    Type: Application
    Filed: April 19, 2023
    Publication date: March 14, 2024
    Inventors: Roei Remez, Brian McCall, Milan Maksimovic, Maoz Ovadia, Arnaud Laflaquière, Gershon Rosenblum, Noah D. Bedard, Omer Korech, Emanuel Mordechai, Keith Lyon, Refael Della Pergola, Niv Gilboa
  • Patent number: 11838675
    Abstract: A depth imaging system in a vehicle includes a lens that includes a polarization-coded aperture. The polarization-coded aperture includes a perpendicular polarization portion to pass incident light entering the perpendicular polarization portion of the polarization-coded aperture as perpendicularly polarized light. The polarization-coded aperture also includes a parallel polarization portion to pass the incident light entering the parallel polarization portion of the polarization-coded aperture as parallel polarized light. An image sensor provides a perpendicularly polarized image based on the perpendicularly polarized light and a parallel polarized image based on the parallel polarized light. A controller processes the perpendicularly polarized image and the parallel polarized image to identify one or more objects in a field of view of the depth imaging system and to determine a range to each of the one or more objects.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: December 5, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Emanuel Mordechai
  • Patent number: 11808841
    Abstract: Systems and methods to perform sensor fusion with a depth imager and a radar system involve transmitting radio frequency (RF) energy from the radar system to a region and simultaneously emitting light to the region using a light source, Reflected light is received at a depth imager aligned with the light source, and RF reflections are received at the radar system. The reflected light is processed to obtain azimuth, elevation, range, variance in range, and reflectivity to each pixel that makes up the region. Processing the RF reflections provides azimuth, elevation, range, variance in range, velocity, and variance in velocity to a subset of the pixels representing a region of interest. Performing the sensor fusion includes using the azimuth, the elevation, the variance in range, and the reflectivity resulting from the depth imager and the range, the velocity, and the variance in velocity resulting from the radar system.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: November 7, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Igal Bilik
  • Patent number: 11808859
    Abstract: A vehicle, imaging system and method of determining a range of an object to a vehicle. The imaging system includes a light source, a receiver and a processor. The light source is configured to transmit a source signal at a source frequency at an object, wherein the source signal is reflected from the object to create a reflected signal. The receiver includes a sensor array and is configured to modulate the reflected signal at a mixing frequency to generate a down-converted signal and record the down-converted signal at the sensor array. The processor is configured to determine a range of the object to the vehicle using the down-converted signal.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: November 7, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Emanuel Mordechai
  • Patent number: 11729521
    Abstract: Systems and method are provided for generating an image of an environment of a vehicle. In one embodiment, a method includes: determining, by a processor, a first position of a plurality of positions within a first field of view; controlling, by the processor, a discrete scanning device based on the first position; capturing, by an imaging device, pixel data for a plurality of pixels within a second field of view associated with the first position, wherein the second field of view is within the first field of view; and combining, by the processor, the pixel data from the second field of view with pixel data captured from a third field of view associated with one of the plurality of positions to form image data depicting the environment of the vehicle.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: August 15, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Tzvi Philipp
  • Patent number: 11614522
    Abstract: A method for measuring a distance to a target based upon time modulated polarization state illumination is provided. The method includes: transmitting a time varying polarized light beam toward the target; capturing, at a plurality of subpixel regions of a receiver, a reflected time varying polarized light beam that has been reflected off of the target; generating a plurality of polarization signals for each subpixel region that are indicative of the polarization state of the captured reflected light beam in the subpixel region; calculating a time difference between the transmitted time varying polarized light beam and the captured reflected light beam by comparing the polarization state of the captured reflected light beam with a polarization state of the transmitted time varying polarized light beam; and calculating the distance by multiplying the calculated time difference with the speed of light.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 28, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Tzvi Philipp
  • Publication number: 20220286606
    Abstract: Systems and method are provided for generating an image of an environment of a vehicle. In one embodiment, a method includes: determining, by a processor, a first position of a plurality of positions within a first field of view; controlling, by the processor, a discrete scanning device based on the first position; capturing, by an imaging device, pixel data for a plurality of pixels within a second field of view associated with the first position, wherein the second field of view is within the first field of view; and combining, by the processor, the pixel data from the second field of view with pixel data captured from a third field of view associated with one of the plurality of positions to form image data depicting the environment of the vehicle.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 8, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Tzvi Philipp
  • Publication number: 20220272234
    Abstract: A depth imaging system in a vehicle includes a lens that includes a polarization-coded aperture. The polarization-coded aperture includes a perpendicular polarization portion to pass incident light entering the perpendicular polarization portion of the polarization-coded aperture as perpendicularly polarized light. The polarization-coded aperture also includes a parallel polarization portion to pass the incident light entering the parallel polarization portion of the polarization-coded aperture as parallel polarized light. An image sensor provides a perpendicularly polarized image based on the perpendicularly polarized light and a parallel polarized image based on the parallel polarized light. A controller processes the perpendicularly polarized image and the parallel polarized image to identify one or more objects in a field of view of the depth imaging system and to determine a range to each of the one or more objects.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventor: Emanuel Mordechai
  • Patent number: 11418762
    Abstract: A system and method may include capturing a multi-channel polarimetric image and a multi-channel RGB image of a scene by a color polarimetric imaging camera. A multi-channel hyperspectral image may be synthesized from the multi-channel RGB image and concatenated with the multi-channel polarimetric image to create an integrated polarimetric-hyperspectral image. Scene properties within the integrated polarimetric-hyperspectral image may be disentangled.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 16, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dan Levi, Emanuel Mordechai
  • Publication number: 20220187466
    Abstract: A vehicle, imaging system and method of determining a range of an object to a vehicle. The imaging system includes a light source, a receiver and a processor. The light source is configured to transmit a source signal at a source frequency at an object, wherein the source signal is reflected from the object to create a reflected signal. The receiver includes a sensor array and is configured to modulate the reflected signal at a mixing frequency to generate a down-converted signal and record the down-converted signal at the sensor array. The processor is configured to determine a range of the object to the vehicle using the down-converted signal.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 16, 2022
    Inventor: Emanuel Mordechai
  • Publication number: 20220107405
    Abstract: Systems and methods to perform sensor fusion with a depth imager and a radar system involve transmitting radio frequency (RF) energy from the radar system to a region and simultaneously emitting light to the region using a light source, Reflected light is received at a depth imager aligned with the light source, and RF reflections are received at the radar system. The reflected light is processed to obtain azimuth, elevation, range, variance in range, and reflectivity to each pixel that makes up the region. Processing the RF reflections provides azimuth, elevation, range, variance in range, velocity, and variance in velocity to a subset of the pixels representing a region of interest. Performing the sensor fusion includes using the azimuth, the elevation, the variance in range, and the reflectivity resulting from the depth imager and the range, the velocity, and the variance in velocity resulting from the radar system.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Inventors: Emanuel Mordechai, Igal Bilik
  • Publication number: 20220086403
    Abstract: A system and method may include capturing a multi-channel polarimetric image and a multi-channel RGB image of a scene by a color polarimetric imaging camera. A multi-channel hyperspectral image may be synthesized from the multi-channel RGB image and concatenated with the multi-channel polarimetric image to create an integrated polarimetric-hyperspectral image. Scene properties within the integrated polarimetric-hyperspectral image may be disentangled.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Inventors: Dan Levi, Emanuel Mordechai
  • Patent number: 11127147
    Abstract: The present application relates to a method and apparatus for generating a three-dimensional point cloud generation using a polarimetric camera in a drive assistance system equipped vehicle including a camera configured to capture a color image for a field of view and a polarimetric data of the field of view, a processor configured to perform a neural network function in response to the color image and the polarimetric data to generate a depth map of the field of view, and a vehicle controller configured a perform an advanced driving assistance function and to control a vehicle movement in response to the depth map.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: September 21, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Dan Levi, Eran Kishon
  • Publication number: 20210123754
    Abstract: A vehicle, system and method for aligning a sensor with the vehicle. A first inertial measurement unit (IMU) associated with the vehicle obtains a first measurement of a kinematic vector of the vehicle. A second IMU associated with the sensor obtains a second measurement of the kinematic vector. A processor determines a current relative orientation between a first reference frame associated with the vehicle and a second reference frame associated with the sensor from the kinematic vector, determines an alignment error between the sensor and the vehicle based on the current relative orientation and a specified relative orientation, and adjusts the sensor from the current relative orientation to the specified relative orientation to correct for the alignment error.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 29, 2021
    Inventors: Emanuel Mordechai, Michael Slutsky
  • Publication number: 20210055389
    Abstract: A method for measuring a distance to a target based upon time modulated polarization state illumination is provided. The method includes: transmitting a time varying polarized light beam toward the target; capturing, at a plurality of sub pixel regions of a receiver, a reflected time varying polarized light beam that has been reflected off of the target; generating a plurality of polarization signals for each sub pixel region that are indicative of the polarization state of the captured reflected light beam in the sub pixel region; calculating a time difference between the transmitted time varying polarized light beam and the captured reflected light beam by comparing the polarization state of the captured reflected light beam with a polarization state of the transmitted time varying polarized light beam; and calculating the distance by multiplying the calculated time difference with the speed of light.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Emanuel Mordechai, Tzvi Philipp
  • Publication number: 20200064478
    Abstract: A vehicle, Lidar system and method of imaging a field of interest. A laser illuminates a field of interest with a source pulse of light. A quadrant detector receives a reflected pulse that is a reflection of the source pulse from the field of interest. A processor determine a three-dimensional image of the field of interest from a location of the reflected pulse at the quadrant detector and a time-of-flight for the reflected pulse. The processor further navigates the vehicle through the field of interest using the three-dimension image.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Inventors: Emanuel Mordechai, Tzvi Philipp