Patents by Inventor Emiel de Smit

Emiel de Smit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891517
    Abstract: Wax compositions may be obtained by providing an olefinic feed comprising a first linear alpha olefin having m carbon atoms and a second linear alpha olefin having n carbon atoms, wherein m and n are independently selected integers each ranging from about 12 to about 100, and the olefinic feed optionally comprises one or more internal olefins and/or one or more branched olefins; contacting the olefinic feed with a metal carbene catalyst in a reactor; forming ethylene and a hydrocarbon substance comprising a linear olefin dimer comprising two carbon atoms less than a sum of m and n; removing the ethylene from the reactor while forming the linear olefin dimer; and isolating a wax composition comprising the linear olefin dimer, a hydrogenated reaction product thereof, or any combination thereof.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: February 6, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Anatoly I. Kramer, Alexander V. Zabula, Elizabeth A. Turner, Raf de Meester, Helge Jaensch, Jeffrey C. Bunquin, Javier Guzman, Emiel de Smit, John S. Coleman, Madelyn Bekker, Roxana Perez Velez
  • Publication number: 20230159759
    Abstract: Wax compositions may be obtained by subjecting one or more linear alpha olefins to olefin metathesis and optionally hydrogenating. The wax compositions comprise: a hydrocarbon substance comprising a linear olefin dimer formed from a first linear alpha olefin having m carbon atoms and a second linear alpha olefin having n carbon atoms, a hydrogenated or partially hydrogenated reaction product of the linear olefin dimer, or any combination thereof, the first linear alpha olefin and the second linear alpha olefin being the same or different, and the linear olefin dimer comprising two carbon atoms less than a sum of m and n; wherein m and n are independently selected integers each ranging from 12 to 100; and wherein the wax composition has a melting point of 25° C. or greater.
    Type: Application
    Filed: March 2, 2021
    Publication date: May 25, 2023
    Inventors: Anatoly I. Kramer, Alexander V. Zabula, Elizabeth A. Turner, Roxana Perez Velez, Helge Jaensch, Jeffrey C. Bunquin, Javier Guzman, Emiel de Smit, John S. Coleman, Madelyn Bekker
  • Publication number: 20230127018
    Abstract: Wax compositions may be obtained by providing an olefinic feed comprising a first linear alpha olefin having m carbon atoms and a second linear alpha olefin having n carbon atoms, wherein m and n are independently selected integers each ranging from about 12 to about 100, and the olefinic feed optionally comprises one or more internal olefins and/or one or more branched olefins; contacting the olefinic feed with a metal carbene catalyst in a reactor; forming ethylene and a hydrocarbon substance comprising a linear olefin dimer comprising two carbon atoms less than a sum of m and n; removing the ethylene from the reactor while forming the linear olefin dimer; and isolating a wax composition comprising the linear olefin dimer, a hydrogenated reaction product thereof, or any combination thereof.
    Type: Application
    Filed: March 2, 2021
    Publication date: April 27, 2023
    Inventors: Anatoly I. Kramer, Alexander V. Zabula, Elizabeth A. Turner, Raf de Meester, Helge Jaensch, Jeffrey C. Bunquin, Javier Guzman, Emiel de Smit, John S. Coleman, Madelyn Bekker, Roxana Perez Velez
  • Publication number: 20200102256
    Abstract: A process for oligomerizing an olefin feedstock to produce an olgiomerization product, a method for analysing an oligomerization product, and an oligomerization product are disclosed. Preferably, the process comprises contacting the olefin feedstock with an oligomerization catalyst under effective oligomerization conditions, wherein the olefin feedstock comprises at least 50 wt % of one or more C6 olefins, based on the weight of the olefins in the olefin feedstock, and wherein the oligomerization catalyst comprises a crystalline molecular sieve, such as an intermediate pore size crystalline molecular sieve or a large pore size crystalline molecular sieve.
    Type: Application
    Filed: January 26, 2018
    Publication date: April 2, 2020
    Inventors: Emiel de Smit, Andrew D. Wiersum, Michael W. Weber, Marianne F. M. Smits, Mechilium J. G. Janssen, Marc P.H. Puttemans, Larry L. laccino
  • Patent number: 10508063
    Abstract: Process for converting an olefin containing hydrocarbon feed into an oligomerization product or a hydrogenated oligomerization product, comprising contacting the feed in a reactor with an oligomerization catalyst under conditions suitable to oligomerize the olefin to obtain an oligomerization product and optionally hydrogenating the oligomerization product wherein the content of the at least one C4-, C5-, C6- or C7-cyclic olefin in the feed is controlled.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: December 17, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Emiel De Smit, Mechilium J. G. Janssen, Marc P. H. Puttemans
  • Publication number: 20190046957
    Abstract: A process for regenerating an adsorbent for nitrogen-containing compounds present in a hydrocarbon feed comprising contacting the adsorbent with an inert gas at a temperature in the range of from 10 to 60° C., followed by contacting the adsorbent with an inert gas at an elevated temperature in the range of from 200 to 260° C. and cooling the adsorbent in an inert gas.
    Type: Application
    Filed: July 13, 2016
    Publication date: February 14, 2019
    Inventors: Silvio Carrettin, Luc R.M. Martens, Paul Hamilton, Mechilium J. G. Janssen, Emiel De Smit, Joeri Denayer, Anuschka Liekens, Marianne F. M. Smits, Mark R. Welford, Christopher J. Taylor
  • Patent number: 10017433
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 10, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20180050971
    Abstract: Processes for selectively alkylating and/or dealkylating one ring of cyclohexylbenzyl and/or biphenyl compounds are provided. Such selective alkylation and/or dealkylation takes place through a transalkylation reaction between the cyclohexylbenzyl compound and a substituted or unsubstituted benzene, which replaces the phenyl moiety of the cyclohexylbenzyl compound. The transalkylated cyclohexylbenzyl may be dehydrogenated to give a corresponding biphenyl compound. The same reaction steps can be utilized with respect to biphenyl compounds by first partially hydrogenating one phenyl ring of the biphenyl compound, thereby obtaining a corresponding cyclohexylbenzyl compound, which may undergo the transalkylation and, optionally, subsequent dehydrogenation.
    Type: Application
    Filed: December 16, 2015
    Publication date: February 22, 2018
    Inventors: Michael Salciccioli, Neeraj Sangar, Tan-Jen Chen, Emiel de Smit, Ali A. Kheir, Aaron B. Pavlish
  • Publication number: 20180037520
    Abstract: Process for converting an olefin containing hydrocarbon feed into an oligomerization product or a hydrogenated oligomerization product, comprising contacting the feed in a reactor with an oligomerization catalyst under conditions suitable to oligomerize the olefin to obtain an oligomerization product and optionally hydrogenating the oligomerization product wherein the content of the at least one C4-, C5-, C6- or C7-cyclic olefin in the feed is controlled.
    Type: Application
    Filed: November 27, 2015
    Publication date: February 8, 2018
    Inventors: Emiel De Smit, Mechilium J.G. Janssen, Marc P.H. Puttemans
  • Patent number: 9856186
    Abstract: A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X? dialkylbiphenyl isomer (where X? is 2?, 3? and/or 4?), into at least one different isomer, 3,3?, 3,4? and/or 4,4? dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: January 2, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Jihad M. Dakka, Emiel de Smit, Neeraj Sangar, Scott J. Weigel, Sumathy Raman, Terry E. Helton, Lorenzo C. DeCaul, Christine N. Elia, Chuansheng Bai, Ranjita Ghose
  • Patent number: 9725377
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 8, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel
  • Publication number: 20160176785
    Abstract: A process is described for converting at least one isomer of a dialkyl-substituted biphenyl compound, such as at least one 2,X? dialkylbiphenyl isomer (where X? is 2?, 3? and/or 4?), into at least one different isomer, 3,3?, 3,4? and/or 4,4? dialkylbiphenyl isomer. The process comprises contacting a feed comprising the dialkyl-substituted biphenyl compound isomer with an acid catalyst under isomerization conditions.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 23, 2016
    Inventors: Michael Salciccioli, Jihad M. Dakka, Emiel de Smit, Neeraj Sangar, Scott J. Weigel, Sumathy Raman, Terry E. Helton, Lorenzo C. DeCaul, Christine N. Ella, Chuansheng Bai, Ranjita Ghose
  • Publication number: 20140378697
    Abstract: This invention relates to process for producing biphenyl esters, the process comprising: (a) contacting a feed comprising toluene, xylene or mixtures thereof with hydrogen in the presence of a hydroalkylation catalyst to produce a hydroalkylation reaction product comprising (methylcyclohexyl)toluene, wherein the hydroalkylation catalyst comprises: 1) binder present at 40 wt % or less (based upon weight of final catalyst composition), 2) a hydrogenation component present at 0.2 wt % or less (based upon weight of final catalyst composition), and 3) an acidic component comprising a molecular sieve having a twelve membered (or larger) ring pore opening, channel or pocket and a largest pore dimension of 6.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventors: Emiel de Smit, Neeraj Sangar, Michael Salciccioli, Jihad M. Dakka, Lorenzo C. DeCaul, Terry E. Helton, Scott J. Weigel