Patents by Inventor Emil G. Radulescu

Emil G. Radulescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11801401
    Abstract: When planning magnetic resonance (MR) guided high intensity focused ultrasonic (HIFU) therapy, HIFU transducer element parameters are optimized as a function of 3D MR data describing a size, shape, and position of a region of interest (ROI) (146) and any obstructions (144) between the HIFU transducer elements and the ROI (146). Transducer element phases and amplitudes are adjusted to maximize HIFU radiation delivery to the ROI (146) while minimizing delivery to the obstruction (144). Additionally or alternatively, transducer elements are selectively deactivated if the obstruction (144) is positioned between the ROI (146) and a given transducer element.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: October 31, 2023
    Assignee: Profound Medical Inc.
    Inventors: Emil G. Radulescu, Gosta Jakob Ehnholm, Ramon Q. Erkamp, I. A. Julius Koskela, Shunmugavelu D. Sokka, Erkki T. Vahala, Max Oskar Kohler
  • Publication number: 20220395709
    Abstract: When planning magnetic resonance (MR) guided high intensity focused ultrasonic (HIFU) therapy, HIFU transducer element parameters are optimized as a function of 3D MR data describing a size, shape, and position of a region of interest (ROI) (146) and any obstructions (144) between the HIFU transducer elements and the ROI (146). Transducer element phases and amplitudes are adjusted to maximize HIFU radiation delivery to the ROI (146) while minimizing delivery to the obstruction (144). Additionally or alternatively, transducer elements are selectively deactivated if the obstruction (144) is positioned between the ROI (146) and a given transducer element.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 15, 2022
    Inventors: Emil G. Radulescu, Gosta Jakob Ehnholm, Ramon Q. Erkamp, I.A. Julius Koskela, Shunmugavelu D. Sokka, Erkki T. Vahala, Max Oskar Kohler
  • Publication number: 20180361174
    Abstract: When planning magnetic resonance (MR) guided high intensity focused ultrasonic (HIFU) therapy, HIFU transducer element parameters are optimized as a function of 3D MR data describing a size, shape, and position of a region of interest (ROI) (146) and any obstructions (144) between the HIFU transducer elements and the ROI (146). Transducer element phases and amplitudes are adjusted to maximize HIFU radiation delivery to the ROI (146) while minimizing delivery to the obstruction (144). Additionally or alternatively, transducer elements are selectively deactivated if the obstruction (144) is positioned between the ROI (146) and a given transducer element.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 20, 2018
    Inventors: Emil G. Radulescu, Gosta Jakob Ehnholm, Ramon Q. Erkamp, I.A. Julius Koskela, Shunmugavelu D. Sokka, Erkki T. Vahala, Max Oskar Kohler
  • Patent number: 10058717
    Abstract: When planning magnetic resonance (MR) guided high intensity focused ultrasonic (HIFU) therapy, HIFU transducer element parameters are optimized as a function of 3D MR data describing a size, shape, and position of a region of interest (ROI) (146) and any obstructions (144) between the HIFU transducer elements and the ROI (146). Transducer element phases and amplitudes are adjusted to maximize HIFU radiation delivery to the ROI (146) while minimizing delivery to the obstruction (144). Additionally or alternatively, transducer elements are selectively deactivated if the obstruction (144) is positioned between the ROI (146) and a given transducer element.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: August 28, 2018
    Assignee: Profound Medical Inc.
    Inventors: Emil G. Radulescu, Gosta Jakob Ehnholm, Ramon Q. Erkamp, I. A. Julius Koskela, Shunmugavelu D. Sokka, Erkki T. Vahala, Max Oskar Kohler
  • Publication number: 20130035582
    Abstract: When planning magnetic resonance (MR) guided high intensity focused ultrasonic (HIFU) therapy, HIFU transducer element parameters are optimized as a function of 3D MR data describing a size, shape, and position of a region of interest (ROI) (146) and any obstructions (144) between the HIFU transducer elements and the ROI (146). Transducer element phases and amplitudes are adjusted to maximize HIFU radiation delivery to the ROI (146) while minimizing delivery to the obstruction (144). Additionally or alternatively, transducer elements are selectively deactivated if the obstruction (144) is positioned between the ROI (146) and a given transducer element.
    Type: Application
    Filed: December 7, 2010
    Publication date: February 7, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Emil G. Radulescu, Gosta Jakob Ehnholm, Ramon Q. Erkamp, I. A. Julius Koskela, Shunmugavelu D. Sokka, Erkki T. Vahala, Max Oskar Kohler
  • Publication number: 20080144902
    Abstract: Disclosed is a method and system that efficiently compares data from two ultrasound images and derives a tissue displacement map for real-time diagnostic imaging applications.
    Type: Application
    Filed: October 25, 2006
    Publication date: June 19, 2008
    Inventor: Emil G. Radulescu
  • Patent number: 7223241
    Abstract: A computational efficient algorithm for compression analysis of free-hand static elasticity imaging performed using medical diagnostic ultrasound imaging equipment offers tissue compression quality and quantity feedback to the operator. The algorithm includes a criterion for automatic selection of the most advantageous pre- and post-compression frame pairs delivering elasticity images of optimal dynamic ranges (DR) and signal-to-noise ratios (SNR). The use of the algorithm in real time eases operator training and reduces significantly the amount of artifact in the elasticity images while lowering the computational burden.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 29, 2007
    Assignee: Aloka Co., Ltd.
    Inventor: Emil G. Radulescu