Patents by Inventor Emil Pfender

Emil Pfender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5344551
    Abstract: A method is provided for preparing a diamond coating on a substrate. The method includes a first step of applying a partial diamond coating having an effective amount of void area therein to the work surface of a substrate. In a follow-up step the void area in the partial coating is filled with binder, preferably metallic binder. In a later step, diamond projecting outwardly from the binder is further grown, to generate a covering portion or a head portion extending over, and in protective relationship with, the binder or binder material. According to the present invention preferred products are also provided.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: September 6, 1994
    Assignee: Regents of the University of Minnesota
    Inventors: Chung-hsien Tsai, John C. Nelson, Joachim V. R. Herberlein, Emil Pfender, William W. Gerberich
  • Patent number: 5260141
    Abstract: A method is provided for preparing a diamond coating on a substrate. The method includes a first step of applying a partial diamond coating having an effective amount of void area therein to the work surface of a substrate. In a follow-up step the void area in the partial coating is filled with binder, preferably metallic binder. In a later step, diamond projecting outwardly from the binder is further grown, to generate a covering portion or a head portion extending over, and in protective relationship with, the binder or binder material. According to the present invention preferred products are also provided.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: November 9, 1993
    Assignee: Regents of the University of Minnesota
    Inventors: Chung-hsien Tsai, John C. Nelson, Joachim V. R. Heberlein, Emil Pfender, William W. Gerberich
  • Patent number: 5220150
    Abstract: A gas shrouded plasma torch utilizes a hot anode that has an inert gas passing around the periphery of the anode to provide an inert gas shroud for a plasma stream exiting from the anode. The gas shroud is heated as it passes around the exterior of the hot anode, and when it exits from the passageway and forms a shroud, it mixes with and shields the hot plasma. The arrangement gives the results of less turbulence of the plasma flow, while retaining a high temperature which aids in particle processing.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: June 15, 1993
    Assignee: Regents of the University of Minnesota
    Inventors: Emil Pfender, Stuart J. Malmberg
  • Patent number: 5032568
    Abstract: A method is provided to apply a coating of a superconducting ceramic oxide to a substrate comprising introducing an atomized aqueous solution comprising at least three metal salts into inductively coupled plasma so as to deposit a superconductive ceramic oxide on the substrate, or alternatively, to deposit a mixed metal oxide on the substrate, which is converted into a superconductive ceramic oxide by post-annealing.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: July 16, 1991
    Assignee: Regents of the University of Minnesota
    Inventors: Yuk-Chiu Lau, Emil Pfender
  • Patent number: 4818837
    Abstract: A multiple cathode DC arc plasma generator arrangement is used in connection with a single anode for thermal arc plasma processing of materials. A nozzle is provided to introduce a gas in approximately the center of the multiple cathodes, towards the anode. The nozzle injects the gas into the center of the plasma column generated between the cathodes and anode to stabilize such arc and affect the self-induced electrode jets. This provides control of the heat transfer to the anode and permits feeding of particulate matter into the core of the plasma column to enhance inflight processing (melting and/or chemical reaction) of the matter. A set of gas nozzles positioned radially about the anode may be employed for feeding of particulate matter at the anode surface.
    Type: Grant
    Filed: August 24, 1987
    Date of Patent: April 4, 1989
    Assignee: Regents of the University of Minnesota
    Inventor: Emil Pfender
  • Patent number: 4725447
    Abstract: A multiple cathode DC arc plasma generator arrangement is used in connection with a single anode for thermal arc plasma processing of materials. A nozzle is provided to introduce a gas in approximately the center of the multiple cathodes, towards the anode. The nozzle injects the gas into the center of the plasma column generated between the cathodes and anode to stabilize such arc and affect the self-induced electrode jets. This provides control of the heat transfer to the anode and permits feeding of particulate matter into the core of the plasma column to enhance inflight processing (melting and/or chemical reaction) of the matter. A set of gas nozzles positioned radially about the anode may be employed for feeding of particulate matter at the anode surface.
    Type: Grant
    Filed: January 6, 1986
    Date of Patent: February 16, 1988
    Assignee: Regents of the University of Minnesota
    Inventor: Emil Pfender
  • Patent number: RE32908
    Abstract: A multiple cathode DC arc plasma generator arrangement is used in connection with a single anode for thermal arc plasma processing of materials. A nozzle is provided to introduce a gas in approximately the center of the multiple cathodes, towards the anode. The nozzle injects the gas into the center of the plasma column generated between the cathodes and anode to stabilize such arc and affect the self-induced electrode jets. This provides control of the heat transfer to the anode and permits feeding of particulate matter into the core of the plasma column to enhance inflight processing (melting and/or chemical reaction) of the matter. A set of gas nozzles positioned radially about the anode may be employed for feeding of particulate matter at the anode surface.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: April 18, 1989
    Assignee: Regents of the University of Minnesota
    Inventor: Emil Pfender