Patents by Inventor Emil RINGH

Emil RINGH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10237096
    Abstract: There is provided mechanisms for processing a reception signal r. The method is performed by a receiver. The method comprises receiving a reception signal r representing a sequence of input symbols xn, the reception signal comprising a sequence of pulse forms gT selected from a set of pulse forms. The method comprises generating a set of decoded symbols Formula (I) from the reception symbols by subjecting a set of sampled symbols yn derived from the reception signal to a whitening filter defined by second coefficients K, and to an equalizer defmed by first coefficients R. The first coefficients R and the second coefficients K are selected from respective matrices of a Toeplitz decomposition of a Gram matrix G defmed by the inner product of all pulses in the set of pulse forms.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: March 19, 2019
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Emil Ringh, Ather Gattami
  • Patent number: 10034253
    Abstract: According to some embodiments, a method of synchronizing a wireless device with a network node comprises receiving a radio subframe transmitted from the network node. The radio subframe comprises a first Primary Synchronization Signal (PSS) associated with a first Orthogonal Frequency Division Multiplexing (OFDM) symbol and a first plurality of subcarriers. The first PSS is paired with a first Secondary Synchronization Signal (SSS) associated with a second OFDM symbol and the first plurality of subcarriers. The radio subframe also comprises a second PSS associated with the first OFDM symbol and a second plurality of subcarriers. The second PSS is paired with a second SSS associated with the second OFDM symbol and the second plurality of subcarriers. The method further comprises inspecting the first plurality of subcarriers to detect the first PSS and the first SSS and inspecting the second plurality of subcarriers to detect the second PSS and the second SSS.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 24, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mona Hashemi, Jingya Li, Emil Ringh, Henrik Sahlin
  • Publication number: 20180048496
    Abstract: There is provided mechanisms for processing a reception signal r. The method is performed by a receiver. The method comprises receiving a reception signal r representing a sequence of input symbols xn, the reception signal comprising a sequence of pulse forms gT selected from a set of pulse forms. The method comprises generating a set of decoded symbols Formula (I) from the reception symbols by subjecting a set of sampled symbols yn derived from the reception signal to a whitening filter defined by second coefficients K, and to an equalizer defmed by first coefficients R. The first coefficients R and the second coefficients K are selected from respective matrices of a Toeplitz decomposition of a Gram matrix G defmed by the inner product of all pulses in the set of pulse forms.
    Type: Application
    Filed: April 2, 2015
    Publication date: February 15, 2018
    Inventors: Emil Ringh, Ather Gattami
  • Patent number: 9838230
    Abstract: The invention refers to faster than Nyquist communication system wherein a set of symbols is conveyed from a transmitter (21) to a receiver (23), wherein the transmitter (21) and the receiver (23) are coupled by means of a transmission channel (22), comprising a precoder (210) adapted for generating a set of precoded symbols from a set of input symbols by performing a matrix operation with a precoding matrix, a pulse filter (212) adapted for generating a transmission signal to be transmitted over the transmission channel (22) as a function of the precoded symbols, a receiving filter (230) adapted for generating a set of sampled symbols as a function of the transmission signal and noise added by the transmission channel, and a decoder (232) adapted for generating a set of decoded symbols as a function of the set of sampled symbols, wherein the elements of the precoding matrix are dependent on a property of the pulse filter (212), The invention further refers to a transmitter, a receiver and corresponding metho
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: December 5, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Ather Gattami, Emil Ringh
  • Publication number: 20170331670
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20170331577
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20160316444
    Abstract: According to some embodiments, a method of synchronizing a wireless device with a network node comprises receiving a radio subframe transmitted from the network node. The MBSFN radio subframe comprises a first Primary Synchronization Signal (PSS) associated with a first Orthogonal Frequency Division Multiplexing (OFDM) symbol and paired with a first Secondary Synchronization Signal (SSS) associated with a second OFDM symbol. The method further comprises detecting the first PSS and detecting the first SSS within the radio subframe. The method determines system information associated with the network node based on the detected PSS and SSS. The radio subframe is transmitted from the network node as a Multimedia Broadcast Multicast Services Single-Frequency Network (MBSFN) subframe.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Emil Ringh, Mona Hashemi, Jingya Li, Henrik Sahlin
  • Publication number: 20160308697
    Abstract: The invention refers to faster than Nyquist communication system wherein a set of symbols is conveyed from a transmitter (21) to a receiver (23), wherein the transmitter (21) and the receiver (23) are coupled by means of a transmission channel (22), comprising a precoder (210) adapted for generating a set of precoded symbols from a set of input symbols by performing a matrix operation with a precoding matrix, a pulse filter (212) adapted for generating a transmission signal to be transmitted over the transmission channel (22) as a function of the precoded symbols, a receiving filter (230) adapted for generating a set of sampled symbols as a function of the transmission signal and noise added by the transmission channel, and a decoder (232) adapted for generating a set of decoded symbols as a function of the set of sampled symbols, wherein the elements of the precoding matrix are dependent on a property of the pulse filter (212), The invention further refers to a transmitter, a receiver and corresponding metho
    Type: Application
    Filed: December 5, 2014
    Publication date: October 20, 2016
    Inventors: Ather Gattami, Emil Ringh
  • Publication number: 20160142989
    Abstract: According to some embodiments, a method of synchronizing a wireless device with a network node comprises receiving a radio subframe transmitted from the network node. The radio subframe comprises a first Primary Synchronization Signal (PSS) associated with a first Orthogonal Frequency Division Multiplexing (OFDM) symbol and a first plurality of subcarriers. The first PSS is paired with a first Secondary Synchronization Signal (SSS) associated with a second OFDM symbol and the first plurality of subcarriers. The radio subframe also comprises a second PSS associated with the first OFDM symbol and a second plurality of subcarriers. The second PSS is paired with a second SSS associated with the second OFDM symbol and the second plurality of subcarriers. The method further comprises inspecting the first plurality of subcarriers to detect the first PSS and the first SSS and inspecting the second plurality of subcarriers to detect the second PSS and the second SSS.
    Type: Application
    Filed: May 21, 2015
    Publication date: May 19, 2016
    Inventors: Mona Hashemi, Jingya Li, Emil Ringh, Henrik Sahlin
  • Publication number: 20160142241
    Abstract: According to some embodiments, a method of synchronizing a wireless device with a network node comprises receiving a radio subframe transmitted from the network node. The radio subframe comprises a first Primary Synchronization Signal (PSS) associated with a first Orthogonal Frequency Division Multiplexing (OFDM) symbol and paired with a first Secondary Synchronization Signal (SSS) associated with a second OFDM symbol. The radio subframe also comprises a second PSS associated with a third OFDM symbol and paired with a second SSS associated with a fourth OFDM symbol. The method further comprises detecting at least one of the first PSS and the second PSS within the radio subframe and detecting at least one of the first SSS and the second SSS within the radio subframe. The method determines system information associated with the network node based on the detected at least one PSS and the detected at least one SSS.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 19, 2016
    Inventors: Henrik SAHLIN, Mona HASHEMI, Jingya LI, Emil RINGH