Patents by Inventor Emily Ann Donnelly

Emily Ann Donnelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105721
    Abstract: Devices with increased susceptibility to ionizing radiation feature multiple parasitic transistors having leakage currents that increase with total ionizing dose (TID) due to negative threshold shifts from radiation-induced charge buildup in the field oxide. Leakage currents of parasitic edge transistors associated with active region sidewalls under a gate are enhanced using branching gate patterns that increase the number of these sidewalls. Other variations combine parasitic edge transistors with parasitic field transistors formed under the field oxide between active regions, or between n-wells and active regions. Arrays of such devices connected in parallel further multiply leakage currents, while novel compact designs increase the density and hence the sensitivity to TID for a given circuit area.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Apogee Semiconductor, Inc.
    Inventors: Emily Ann Donnelly, Mark Hamlyn, Kyle Schulmeyer, Gregory A. Magel
  • Patent number: 10950489
    Abstract: Designs for radiation hardening CMOS devices and integrated circuits using shallow trench isolation (STI) improve total ionizing dose (TID) radiation response by reducing the leakage currents from source to drain associated with corners and sidewalls of trench insulator edges passing under the gate in an NMOS device while maintaining high breakdown voltage. A silicide block pattern is used in combination with pullback of N+ source and drain regions from at least a portion of these edges of the active region. Additional p-type implants along these edges further increase parasitic threshold voltages and enhance radiation hardness. A process for fabricating devices and integrated circuits incorporating these features is also provided. These techniques and processes are applied to exemplary low-voltage NMOS transistors having straight gates and to high-voltage annular-gate devices, as well as to device-to-device isolation in integrated circuits.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: March 16, 2021
    Assignee: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20200357681
    Abstract: Designs for radiation hardening CMOS devices and integrated circuits using shallow trench isolation (STI) improve total ionizing dose (TID) radiation response by reducing the leakage currents from source to drain associated with corners and sidewalls of trench insulator edges passing under the gate in an NMOS device while maintaining high breakdown voltage. A silicide block pattern is used in combination with pullback of N+ source and drain regions from at least a portion of these edges of the active region. Additional p-type implants along these edges further increase parasitic threshold voltages and enhance radiation hardness. A process for fabricating devices and integrated circuits incorporating these features is also provided. These techniques and processes are applied to exemplary low-voltage NMOS transistors having straight gates and to high-voltage annular-gate devices, as well as to device-to-device isolation in integrated circuits.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Applicant: TallannQuest LLC DBA Apogee Semiconductor
    Inventor: Emily Ann Donnelly
  • Patent number: 10770342
    Abstract: Designs for radiation hardening CMOS devices and integrated circuits using shallow trench isolation (STI) improve total ionizing dose (TID) radiation response by reducing the leakage currents from source to drain associated with corners and sidewalls of trench insulator edges passing under the gate in an NMOS device while maintaining high breakdown voltage. A silicide block pattern is used in combination with pullback of N+ source and drain regions from at least a portion of these edges of the active region. Additional p-type implants along these edges further increase parasitic threshold voltages and enhance radiation hardness. A process for fabricating devices and integrated circuits incorporating these features is also provided. These techniques and processes are applied to exemplary low-voltage NMOS transistors having straight gates and to high-voltage annular-gate devices, as well as to device-to-device isolation in integrated circuits.
    Type: Grant
    Filed: December 23, 2018
    Date of Patent: September 8, 2020
    Assignee: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20200090981
    Abstract: Designs for radiation hardening CMOS devices and integrated circuits using shallow trench isolation (STI) improve total ionizing dose (TID) radiation response by reducing the leakage currents from source to drain associated with corners and sidewalls of trench insulator edges passing under the gate in an NMOS device while maintaining high breakdown voltage. A silicide block pattern is used in combination with pullback of N+ source and drain regions from at least a portion of these edges of the active region. Additional p-type implants along these edges further increase parasitic threshold voltages and enhance radiation hardness. A process for fabricating devices and integrated circuits incorporating these features is also provided. These techniques and processes are applied to exemplary low-voltage NMOS transistors having straight gates and to high-voltage annular-gate devices, as well as to device-to-device isolation in integrated circuits.
    Type: Application
    Filed: December 23, 2018
    Publication date: March 19, 2020
    Applicant: TallannQuest LLC DBA Apogee Semiconductor
    Inventor: Emily Ann Donnelly
  • Patent number: 10242151
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 26, 2019
    Assignee: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20180096096
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Application
    Filed: August 31, 2017
    Publication date: April 5, 2018
    Applicant: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Patent number: 9779203
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: October 3, 2017
    Assignee: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20170098028
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Applicant: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Patent number: 9569583
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: February 14, 2017
    Assignee: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20150286772
    Abstract: A method, system, and computer program product include electronic design automation (EDA) tools used with standard CMOS processes to design and produce radiation-hardened (rad-hard) integrated circuits (ICs) having a predictable level of radiation hardness while maintaining a desired level of performance and tracking circuit area. The tools include rad-hard design rule checking (DRC) decks, rad-hard SPICE models, and rad-hard cell libraries. A rad-hard parasitic components extraction process makes use of rad-hard DRC rules to locate occurrences of parasitic devices, calculate their effects on circuit performance, and return this information to layout and circuit simulation tools. Changes to the layout are suggested and implemented with varying degrees of automation. Some of these tools can be provided as components of a rad-hard process design kit (PDK). They can be used in conjunction with commercial EDA tools to facilitate the incorporation of rad-hard features into new or existing IC designs.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 8, 2015
    Applicant: TallannQuest LLC
    Inventor: Emily Ann Donnelly
  • Publication number: 20110084324
    Abstract: Radiation hardened NMOS devices suitable for application in NMOS, CMOS, or BiCMOS integrated circuits, and methods for fabricating them. A device includes a p-type silicon substrate, a field oxide surrounding a moat region on the substrate tapering through a bird's beak region to a gate oxide within the moat region, a heavily-doped p-type guard region underlying at least a portion of the bird's beak region and terminating at the inner edge of the bird's beak region, a gate crossing the moat region, and n-type source and drain regions spaced by a gap from the inner edge of the guard region. A variation of a local oxidation of silicon process is used with an additional bird's beak implantation mask as well as minor alterations to the conventional moat and n-type source/drain masks. The resulting devices have improved radiation tolerance while having a high breakdown voltage and minimal impact on circuit density.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Emily Ann Donnelly, Byron Neville Burgess, Randolph W. Kahn, Todd Douglas Stubblefield