Patents by Inventor Emily Shu

Emily Shu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9665017
    Abstract: Various embodiments provide systems and methods for extreme ultraviolet (EUV) lithography light source. An exemplary system can include a laser radiation apparatus configured to provide laser radiation. The system can further include an EUV light excitation source material configured to receive the laser radiation to generate an EUV light. The laser radiation can generate droplets from the EUV light excitation source material. The system can further include a collector configured to collect the EUV light. The collector can include a plurality of reflective mirrors surrounding the EUV light excitation source material. The plurality of reflective mirrors can be movable. The collector can further include a mirror control system synchronized with the laser radiation apparatus and configured to set the plurality of reflective mirrors to be in one of a reflective state for reflecting the EUV light and a non-reflective state for preventing contamination by the droplets.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 30, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Emily Shu
  • Publication number: 20160018739
    Abstract: Various embodiments provide systems and methods for extreme ultraviolet (EUV) lithography light source. An exemplary system can include a laser radiation apparatus configured to provide laser radiation. The system can further include an EUV light excitation source material configured to receive the laser radiation to generate an EUV light. The laser radiation can generate droplets from the EUV light excitation source material. The system can further include a collector configured to collect the EUV light. The collector can include a plurality of reflective mirrors surrounding the EUV light excitation source material. The plurality of reflective mirrors can be movable. The collector can further include a mirror control system synchronized with the laser radiation apparatus and configured to set the plurality of reflective mirrors to be in one of a reflective state for reflecting the EUV light and a non-reflective state for preventing contamination by the droplets.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 21, 2016
    Inventor: EMILY SHU
  • Patent number: 9176400
    Abstract: Various embodiments provide systems and methods for extreme ultraviolet (EUV) lithography light source. An exemplary system can include a laser radiation apparatus configured to provide laser radiation. The system can further include an EUV light excitation source material configured to receive the laser radiation to generate an EUV light. The laser radiation can generate droplets from the EUV light excitation source material. The system can further include a collector configured to collect the EUV light. The collector can include a plurality of reflective mirrors surrounding the EUV light excitation source material. The plurality of reflective mirrors can be movable. The collector can further include a mirror control system synchronized with the laser radiation apparatus and configured to set the plurality of reflective mirrors to be in one of a reflective state for reflecting the EUV light and a non-reflective state for preventing contamination by the droplets.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: November 3, 2015
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Emily Shu
  • Patent number: 9054021
    Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate, and forming a metal layer on the semiconductor substrate. The method also includes forming a silicon layer having at least one layer of graphene-like silicon on the metal layer, and forming a metal oxide layer by oxidizing a portion of the metal layer underneath the silicon layer. Further, the method includes forming a source region and a drain region connecting with the silicon layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 9, 2015
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP
    Inventors: Deyuan Xiao, Emily Shu
  • Publication number: 20150034844
    Abstract: Various embodiments provide systems and methods for extreme ultraviolet (EUV) lithography light source. An exemplary system can include a laser radiation apparatus configured to provide laser radiation. The system can further include an EUV light excitation source material configured to receive the laser radiation to generate an EUV light. The laser radiation can generate droplets from the EUV light excitation source material. The system can further include a collector configured to collect the EUV light. The collector can include a plurality of reflective mirrors surrounding the EUV light excitation source material. The plurality of reflective mirrors can be movable. The collector can further include a mirror control system synchronized with the laser radiation apparatus and configured to set the plurality of reflective mirrors to be in one of a reflective state for reflecting the EUV light and a non-reflective state for preventing contamination by the droplets.
    Type: Application
    Filed: May 1, 2014
    Publication date: February 5, 2015
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: EMILY SHU
  • Patent number: 8929051
    Abstract: An apparatus and a method for holding a wafer are provided in this disclosure. The wafer holding apparatus includes: an electrostatic chuck which has a plurality of zones arranged in a matrix; a plurality of power supply units, each of which is adapted to apply a voltage to the plurality of zones of the electrostatic chuck independently; and a control unit which is adapted to control each of the power supply units independently to start or stop applying the voltage to a corresponding zone of the electrostatic chuck. Surface flatness is improved when the wafer is chucked on the wafer holding apparatus according to the disclosure, and the risk of particles contamination can be reduced when the wafer is flattened and gets back into warpage from flatness.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: January 6, 2015
    Assignee: Semiconductor Manufacturing International Corp.
    Inventor: Emily Shu
  • Patent number: 8917489
    Abstract: An apparatus and a method for holding a wafer are provided in this disclosure. The wafer holding apparatus includes: an electrostatic chuck, the electrostatic chuck having a plurality of concentric zones; a plurality of power supply units, each adapted for applying a voltage to one of the zones of the electrostatic chuck independently; and a control unit, adapted for controlling each of the power supply units independently to start or stop applying the voltage to a corresponding zone of the electrostatic chuck. Surface flatness is improved when the wafer is chucked on the wafer holding apparatus according to the disclosure, and the risk of particle contamination can be reduced when the wafer is flattened and gets back into warpage from flatness.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Manufacturing International Corp.
    Inventor: Emily Shu
  • Publication number: 20140145269
    Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate, and forming a metal layer on the semiconductor substrate. The method also includes forming a silicon layer having at least one layer of graphene-like silicon on the metal layer, and forming a metal oxide layer by oxidizing a portion of the metal layer underneath the silicon layer. Further, the method includes forming a source region and a drain region connecting with the silicon layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 29, 2014
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP.
    Inventors: DEYUAN XIAO, EMILY SHU
  • Publication number: 20130100572
    Abstract: An apparatus and a method for holding a wafer are provided in this disclosure. The wafer holding apparatus includes: an electrostatic chuck, the electrostatic chuck having a plurality of concentric zones; a plurality of power supply units, each adapted for applying a voltage to one of the zones of the electrostatic chuck independently; and a control unit, adapted for controlling each of the power supply units independently to start or stop applying the voltage to a corresponding zone of the electrostatic chuck. Surface flatness is improved when the wafer is chucked on the wafer holding apparatus according to the disclosure, and the risk of particle contamination can be reduced when the wafer is flattened and gets back into warpage from flatness.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 25, 2013
    Inventor: EMILY SHU
  • Publication number: 20130100573
    Abstract: An apparatus and a method for holding a wafer are provided in this disclosure. The wafer holding apparatus includes: an electrostatic chuck which has a plurality of zones arranged in a matrix; a plurality of power supply units, each of which is adapted to apply a voltage to the plurality of zones of the electrostatic chuck independently; and a control unit which is adapted to control each of the power supply units independently to start or stop applying the voltage to a corresponding zone of the electrostatic chuck. Surface flatness is improved when the wafer is chucked on the wafer holding apparatus according to the disclosure, and the risk of particles contamination can be reduced when the wafer is flattened and gets back into warpage from flatness.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 25, 2013
    Inventor: EMILY SHU
  • Publication number: 20050180699
    Abstract: An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment.
    Type: Application
    Filed: May 28, 2003
    Publication date: August 18, 2005
    Inventors: Emily Shu, Louis Petrucco, Wolfgang Daum