Patents by Inventor Emily Weinert

Emily Weinert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10202428
    Abstract: H—NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H—NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H—NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H—NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: February 12, 2019
    Assignee: The Regents of the University of California
    Inventors: Stephen P. L. Cary, Elizabeth M. Boon, Emily Weinert, Jonathan A. Winger, Michael A. Marletta
  • Publication number: 20170267732
    Abstract: H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Application
    Filed: October 12, 2016
    Publication date: September 21, 2017
    Inventors: Stephen P. L. CARY, Elizabeth M. BOON, Emily WEINERT, Jonathan A. WINGER, Michael A. MARLETTA
  • Patent number: 9493526
    Abstract: H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: November 15, 2016
    Assignee: The Regents of the University of California
    Inventors: Stephen P. L. Cary, Elizabeth M. Boon, Emily Weinert, Jonathan A. Winger, Michael A. Marletta
  • Publication number: 20150376250
    Abstract: H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Application
    Filed: September 17, 2014
    Publication date: December 31, 2015
    Inventors: Stephen P. L. CARY, Elizabeth M. BOON, Emily WEINERT, Jonathan A. WINGER, Michael A. MARLETTA
  • Patent number: 8404631
    Abstract: H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 26, 2013
    Assignee: The Regents of the University of California
    Inventors: Stephen P. L. Cary, Elizabeth M. Boon, Emily Weinert, Jonathan A. Winger, Michael A. Marletta
  • Publication number: 20100285104
    Abstract: H-NOX proteins are mutated to exhibit improved or optimal kinetic and thermodynamic properties for blood gas O2 delivery. The engineered H-NOX proteins comprise mutations that impart altered O2 or NO ligand-binding relative to the corresponding wild-type H-NOX domain, and are operative as physiologically compatible mammalian blood O2 gas carriers. The invention also provides pharmaceutical compositions, kits, and methods that use wild-type or mutant H-NOX proteins for the treatment of any condition for which delivery of O2 is beneficial.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 11, 2010
    Applicant: The Regents of the University of California
    Inventors: Stephen P. L. Cary, Elizabeth M. Boon, Emily Weinert, Jonathan A. Winger, Michael A. Marletta